Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897813905> ?p ?o ?g. }
- W2897813905 endingPage "200" @default.
- W2897813905 startingPage "185" @default.
- W2897813905 abstract "Life course data often consists of multiple parallel sequences, one for each life domain of interest. Multichannel sequence analysis has been used for computing pairwise dissimilarities and finding clusters in this type of multichannel (or multidimensional) sequence data. Describing and visualizing such data is, however, often challenging. We propose an approach for compressing, interpreting, and visualizing the information within multichannel sequences by finding (1) groups of similar trajectories and (2) similar phases within trajectories belonging to the same group. For these tasks we combine multichannel sequence analysis and hidden Markov modelling. We illustrate this approach with an empirical application to life course data but the proposed approach can be useful in various longitudinal problems." @default.
- W2897813905 created "2018-10-26" @default.
- W2897813905 creator A5016899382 @default.
- W2897813905 creator A5023541320 @default.
- W2897813905 creator A5034432279 @default.
- W2897813905 date "2018-01-01" @default.
- W2897813905 modified "2023-09-24" @default.
- W2897813905 title "Combining Sequence Analysis and Hidden Markov Models in the Analysis of Complex Life Sequence Data" @default.
- W2897813905 cites W1541370613 @default.
- W2897813905 cites W1861191376 @default.
- W2897813905 cites W1893982075 @default.
- W2897813905 cites W1922709871 @default.
- W2897813905 cites W1928823211 @default.
- W2897813905 cites W1948664808 @default.
- W2897813905 cites W1975811690 @default.
- W2897813905 cites W1983169436 @default.
- W2897813905 cites W1987867046 @default.
- W2897813905 cites W1991133427 @default.
- W2897813905 cites W1993423458 @default.
- W2897813905 cites W1993562121 @default.
- W2897813905 cites W2007321142 @default.
- W2897813905 cites W2026687938 @default.
- W2897813905 cites W2070429885 @default.
- W2897813905 cites W2077213550 @default.
- W2897813905 cites W2090543031 @default.
- W2897813905 cites W2114399866 @default.
- W2897813905 cites W2125838338 @default.
- W2897813905 cites W2133403695 @default.
- W2897813905 cites W22744282 @default.
- W2897813905 cites W2325866568 @default.
- W2897813905 cites W3101616037 @default.
- W2897813905 cites W4240912299 @default.
- W2897813905 cites W4245668478 @default.
- W2897813905 doi "https://doi.org/10.1007/978-3-319-95420-2_11" @default.
- W2897813905 hasPublicationYear "2018" @default.
- W2897813905 type Work @default.
- W2897813905 sameAs 2897813905 @default.
- W2897813905 citedByCount "12" @default.
- W2897813905 countsByYear W28978139052018 @default.
- W2897813905 countsByYear W28978139052020 @default.
- W2897813905 countsByYear W28978139052021 @default.
- W2897813905 countsByYear W28978139052022 @default.
- W2897813905 countsByYear W28978139052023 @default.
- W2897813905 crossrefType "book-chapter" @default.
- W2897813905 hasAuthorship W2897813905A5016899382 @default.
- W2897813905 hasAuthorship W2897813905A5023541320 @default.
- W2897813905 hasAuthorship W2897813905A5034432279 @default.
- W2897813905 hasBestOaLocation W28978139051 @default.
- W2897813905 hasConcept C11413529 @default.
- W2897813905 hasConcept C119857082 @default.
- W2897813905 hasConcept C124101348 @default.
- W2897813905 hasConcept C134306372 @default.
- W2897813905 hasConcept C153180895 @default.
- W2897813905 hasConcept C154945302 @default.
- W2897813905 hasConcept C163836022 @default.
- W2897813905 hasConcept C184898388 @default.
- W2897813905 hasConcept C23224414 @default.
- W2897813905 hasConcept C2778112365 @default.
- W2897813905 hasConcept C33923547 @default.
- W2897813905 hasConcept C36503486 @default.
- W2897813905 hasConcept C41008148 @default.
- W2897813905 hasConcept C54355233 @default.
- W2897813905 hasConcept C80444323 @default.
- W2897813905 hasConcept C86803240 @default.
- W2897813905 hasConcept C98763669 @default.
- W2897813905 hasConceptScore W2897813905C11413529 @default.
- W2897813905 hasConceptScore W2897813905C119857082 @default.
- W2897813905 hasConceptScore W2897813905C124101348 @default.
- W2897813905 hasConceptScore W2897813905C134306372 @default.
- W2897813905 hasConceptScore W2897813905C153180895 @default.
- W2897813905 hasConceptScore W2897813905C154945302 @default.
- W2897813905 hasConceptScore W2897813905C163836022 @default.
- W2897813905 hasConceptScore W2897813905C184898388 @default.
- W2897813905 hasConceptScore W2897813905C23224414 @default.
- W2897813905 hasConceptScore W2897813905C2778112365 @default.
- W2897813905 hasConceptScore W2897813905C33923547 @default.
- W2897813905 hasConceptScore W2897813905C36503486 @default.
- W2897813905 hasConceptScore W2897813905C41008148 @default.
- W2897813905 hasConceptScore W2897813905C54355233 @default.
- W2897813905 hasConceptScore W2897813905C80444323 @default.
- W2897813905 hasConceptScore W2897813905C86803240 @default.
- W2897813905 hasConceptScore W2897813905C98763669 @default.
- W2897813905 hasLocation W28978139051 @default.
- W2897813905 hasLocation W28978139052 @default.
- W2897813905 hasLocation W28978139053 @default.
- W2897813905 hasLocation W28978139054 @default.
- W2897813905 hasOpenAccess W2897813905 @default.
- W2897813905 hasPrimaryLocation W28978139051 @default.
- W2897813905 hasRelatedWork W1966785319 @default.
- W2897813905 hasRelatedWork W2021852343 @default.
- W2897813905 hasRelatedWork W2097464803 @default.
- W2897813905 hasRelatedWork W2111983527 @default.
- W2897813905 hasRelatedWork W2131524408 @default.
- W2897813905 hasRelatedWork W2136799844 @default.
- W2897813905 hasRelatedWork W2160448643 @default.
- W2897813905 hasRelatedWork W2897813905 @default.
- W2897813905 hasRelatedWork W3105867654 @default.
- W2897813905 hasRelatedWork W4312814693 @default.