Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897816168> ?p ?o ?g. }
- W2897816168 endingPage "59727" @default.
- W2897816168 startingPage "59705" @default.
- W2897816168 abstract "Culprits' identification by the means of suspicious pattern detection techniques from mobile device data is one of the most important aims of the mobile forensic data analysis. When criminal activities are related to entirely automated procedures such as malware propagation, predicting the corresponding behavior is a rather achievable task. However, when human behavior is involved, such as in cases of traditional crimes, prediction and detection become more compelling. This paper introduces a combined criminal profiling and suspicious pattern detection methodology for two criminal activities with moderate to the heavy involvement of mobile devices, cyberbullying and low-level drug dealing. Neural and Neurofuzzy techniques are applied on a hybrid original and simulated dataset. The respective performance results are measured and presented, the optimal technique is selected, and the scenarios are re-run on an actual dataset for additional testing and verification." @default.
- W2897816168 created "2018-10-26" @default.
- W2897816168 creator A5028427519 @default.
- W2897816168 creator A5044815659 @default.
- W2897816168 creator A5061073194 @default.
- W2897816168 creator A5081229833 @default.
- W2897816168 date "2018-01-01" @default.
- W2897816168 modified "2023-09-30" @default.
- W2897816168 title "Mobile Forensic Data Analysis: Suspicious Pattern Detection in Mobile Evidence" @default.
- W2897816168 cites W1197622812 @default.
- W2897816168 cites W1502860153 @default.
- W2897816168 cites W1732784932 @default.
- W2897816168 cites W1967536410 @default.
- W2897816168 cites W1969399508 @default.
- W2897816168 cites W1977712835 @default.
- W2897816168 cites W1982651887 @default.
- W2897816168 cites W1984859716 @default.
- W2897816168 cites W1994731932 @default.
- W2897816168 cites W2006544565 @default.
- W2897816168 cites W2012546067 @default.
- W2897816168 cites W2014883706 @default.
- W2897816168 cites W2016672081 @default.
- W2897816168 cites W2019207321 @default.
- W2897816168 cites W2023407883 @default.
- W2897816168 cites W2024919586 @default.
- W2897816168 cites W2035121584 @default.
- W2897816168 cites W2036713095 @default.
- W2897816168 cites W2043968820 @default.
- W2897816168 cites W2053092413 @default.
- W2897816168 cites W2053615983 @default.
- W2897816168 cites W2055990541 @default.
- W2897816168 cites W2056102592 @default.
- W2897816168 cites W2059174629 @default.
- W2897816168 cites W2059951390 @default.
- W2897816168 cites W2060110416 @default.
- W2897816168 cites W2075662026 @default.
- W2897816168 cites W2100898861 @default.
- W2897816168 cites W2107093743 @default.
- W2897816168 cites W2131329317 @default.
- W2897816168 cites W2131835265 @default.
- W2897816168 cites W2133764509 @default.
- W2897816168 cites W2136177244 @default.
- W2897816168 cites W2137356002 @default.
- W2897816168 cites W2152126085 @default.
- W2897816168 cites W2155387335 @default.
- W2897816168 cites W2241637620 @default.
- W2897816168 cites W2321278764 @default.
- W2897816168 cites W2344840595 @default.
- W2897816168 cites W2501996900 @default.
- W2897816168 cites W2552093437 @default.
- W2897816168 cites W2742353928 @default.
- W2897816168 cites W2949016346 @default.
- W2897816168 cites W2998598977 @default.
- W2897816168 cites W37018364 @default.
- W2897816168 cites W86985864 @default.
- W2897816168 cites W907501016 @default.
- W2897816168 doi "https://doi.org/10.1109/access.2018.2875068" @default.
- W2897816168 hasPublicationYear "2018" @default.
- W2897816168 type Work @default.
- W2897816168 sameAs 2897816168 @default.
- W2897816168 citedByCount "12" @default.
- W2897816168 countsByYear W28978161682020 @default.
- W2897816168 countsByYear W28978161682021 @default.
- W2897816168 countsByYear W28978161682022 @default.
- W2897816168 countsByYear W28978161682023 @default.
- W2897816168 crossrefType "journal-article" @default.
- W2897816168 hasAuthorship W2897816168A5028427519 @default.
- W2897816168 hasAuthorship W2897816168A5044815659 @default.
- W2897816168 hasAuthorship W2897816168A5061073194 @default.
- W2897816168 hasAuthorship W2897816168A5081229833 @default.
- W2897816168 hasBestOaLocation W28978161681 @default.
- W2897816168 hasConcept C111919701 @default.
- W2897816168 hasConcept C116834253 @default.
- W2897816168 hasConcept C117660856 @default.
- W2897816168 hasConcept C124101348 @default.
- W2897816168 hasConcept C127413603 @default.
- W2897816168 hasConcept C144024400 @default.
- W2897816168 hasConcept C153180895 @default.
- W2897816168 hasConcept C154945302 @default.
- W2897816168 hasConcept C186967261 @default.
- W2897816168 hasConcept C187191949 @default.
- W2897816168 hasConcept C201995342 @default.
- W2897816168 hasConcept C2780451532 @default.
- W2897816168 hasConcept C36464697 @default.
- W2897816168 hasConcept C38652104 @default.
- W2897816168 hasConcept C41008148 @default.
- W2897816168 hasConcept C541664917 @default.
- W2897816168 hasConcept C552425265 @default.
- W2897816168 hasConcept C59822182 @default.
- W2897816168 hasConcept C73484699 @default.
- W2897816168 hasConcept C84418412 @default.
- W2897816168 hasConcept C86803240 @default.
- W2897816168 hasConceptScore W2897816168C111919701 @default.
- W2897816168 hasConceptScore W2897816168C116834253 @default.
- W2897816168 hasConceptScore W2897816168C117660856 @default.
- W2897816168 hasConceptScore W2897816168C124101348 @default.
- W2897816168 hasConceptScore W2897816168C127413603 @default.
- W2897816168 hasConceptScore W2897816168C144024400 @default.