Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897829040> ?p ?o ?g. }
- W2897829040 endingPage "994" @default.
- W2897829040 startingPage "982" @default.
- W2897829040 abstract "Tissue engineering has provided an alternative strategy for the regeneration of functional tissues for drug screening and disease intervention. The central challenge in the development of mature and functional excitable tissues is to design and construct advanced conductive biomaterials that can guide cells to form electrically interconnected networks. The objective of this study was to develop reduced graphene oxide modified silk nanofibrous biomaterials with controllable surface deposition on the nanoscale. A vacuum filtration system was applied to attain reduced graphene oxide nanolayer deposition. The results demonstrate that with this method, a uniform and compact reduced graphene oxide nanolayer was formed, and the conductivity and nanofibrous morphology of the materials was well controlled. The composite nanofibrous scaffolds were applied for the engineering of cardiac tissues and demonstrated a great ability to promote tissue formation and functions, including the expression of cardiac-specific proteins, the formation of sarcomeric structures and gap junctions, and tissue contraction. External electrical stimulation further enhanced the maturation level of cardiac tissues cultured on these conductive scaffolds. All these results demonstrated the great potential of reduced graphene oxide functionalized silk biomaterials fabricated using our method for recapitulating electrical microenvironments for the regeneration of functional excitable tissues. The key in engineering functional excitable tissues is to develop advanced conductive biomaterials that could guide cells to form electrically interconnected networks. This study aims to develop reduced graphene oxide functionalized silk nanofibrous biomaterials with controllable surface deposition. The composites exhibit uniform nanolayer of reduced graphene oxide, and well controlled conductivity and nanofibrous morphology. The scaffolds promote formation and functionalities of engineered cardiac tissues, and electrical stimulation further enhances these promotion effects. This research provides guidance for using reduced graphene oxide to fabricate conductive nanofibrous biomaterials for the regeneration of functional excitable tissues. A biocompatible scaffold that helps cardiac cells grow into actively beating tissue has been developed by researchers centered in Xi’an, China. Feng Xu and Xiaohui Zhang from Bioinspired Engineering and Biomechanics Center (BEBC) at Xi’an Jiaotong University and colleagues deposited reduced graphene oxide, a chemically stabilized form of the single-atom thin carbon film, onto naturally stretchy silk nanofibers. After culturing cardiac muscle cells onto the hybrid scaffold, the team showed that the conductive graphene oxide coating helped the new tissue form electrically active, interconnected networks along the silk threads. This engineering strategy produced cardiac tissue healthy enough to beat spontaneously. Significant improvements in tissue beating rates and intensities were obtained when electric fields were applied during the initial cell culture. Electrical stimulation also enhanced expression of cardiac-specific proteins, and helped muscle-like tissue achieve maturity faster." @default.
- W2897829040 created "2018-10-26" @default.
- W2897829040 creator A5000887962 @default.
- W2897829040 creator A5012612954 @default.
- W2897829040 creator A5032822422 @default.
- W2897829040 creator A5033600492 @default.
- W2897829040 creator A5040370936 @default.
- W2897829040 creator A5051439492 @default.
- W2897829040 creator A5066089549 @default.
- W2897829040 creator A5091520233 @default.
- W2897829040 date "2018-10-01" @default.
- W2897829040 modified "2023-10-16" @default.
- W2897829040 title "Reduced graphene oxide functionalized nanofibrous silk fibroin matrices for engineering excitable tissues" @default.
- W2897829040 cites W1881894321 @default.
- W2897829040 cites W1975696225 @default.
- W2897829040 cites W1983327991 @default.
- W2897829040 cites W1984550452 @default.
- W2897829040 cites W1990443094 @default.
- W2897829040 cites W1994270549 @default.
- W2897829040 cites W2000006841 @default.
- W2897829040 cites W2002938949 @default.
- W2897829040 cites W2005879115 @default.
- W2897829040 cites W2016388200 @default.
- W2897829040 cites W2018071690 @default.
- W2897829040 cites W2021833901 @default.
- W2897829040 cites W2022227905 @default.
- W2897829040 cites W2035531193 @default.
- W2897829040 cites W2039619062 @default.
- W2897829040 cites W2040283676 @default.
- W2897829040 cites W2044169471 @default.
- W2897829040 cites W2053818316 @default.
- W2897829040 cites W2062164427 @default.
- W2897829040 cites W2073072215 @default.
- W2897829040 cites W2076069636 @default.
- W2897829040 cites W2076969768 @default.
- W2897829040 cites W2085062813 @default.
- W2897829040 cites W2087960967 @default.
- W2897829040 cites W2098141652 @default.
- W2897829040 cites W2111853718 @default.
- W2897829040 cites W2140649400 @default.
- W2897829040 cites W2151385260 @default.
- W2897829040 cites W2272318470 @default.
- W2897829040 cites W2302487622 @default.
- W2897829040 cites W2337508281 @default.
- W2897829040 cites W2409274337 @default.
- W2897829040 cites W258771904 @default.
- W2897829040 cites W2589234268 @default.
- W2897829040 cites W2613982597 @default.
- W2897829040 cites W2768968664 @default.
- W2897829040 cites W2807137486 @default.
- W2897829040 cites W4233194460 @default.
- W2897829040 cites W6760509 @default.
- W2897829040 doi "https://doi.org/10.1038/s41427-018-0092-8" @default.
- W2897829040 hasPublicationYear "2018" @default.
- W2897829040 type Work @default.
- W2897829040 sameAs 2897829040 @default.
- W2897829040 citedByCount "85" @default.
- W2897829040 countsByYear W28978290402019 @default.
- W2897829040 countsByYear W28978290402020 @default.
- W2897829040 countsByYear W28978290402021 @default.
- W2897829040 countsByYear W28978290402022 @default.
- W2897829040 countsByYear W28978290402023 @default.
- W2897829040 crossrefType "journal-article" @default.
- W2897829040 hasAuthorship W2897829040A5000887962 @default.
- W2897829040 hasAuthorship W2897829040A5012612954 @default.
- W2897829040 hasAuthorship W2897829040A5032822422 @default.
- W2897829040 hasAuthorship W2897829040A5033600492 @default.
- W2897829040 hasAuthorship W2897829040A5040370936 @default.
- W2897829040 hasAuthorship W2897829040A5051439492 @default.
- W2897829040 hasAuthorship W2897829040A5066089549 @default.
- W2897829040 hasAuthorship W2897829040A5091520233 @default.
- W2897829040 hasBestOaLocation W28978290401 @default.
- W2897829040 hasConcept C122302759 @default.
- W2897829040 hasConcept C126348684 @default.
- W2897829040 hasConcept C136229726 @default.
- W2897829040 hasConcept C159985019 @default.
- W2897829040 hasConcept C171250308 @default.
- W2897829040 hasConcept C191897082 @default.
- W2897829040 hasConcept C192562407 @default.
- W2897829040 hasConcept C2779851234 @default.
- W2897829040 hasConcept C2780431358 @default.
- W2897829040 hasConcept C30080830 @default.
- W2897829040 hasConcept C49892992 @default.
- W2897829040 hasConcept C71924100 @default.
- W2897829040 hasConcept C91129048 @default.
- W2897829040 hasConceptScore W2897829040C122302759 @default.
- W2897829040 hasConceptScore W2897829040C126348684 @default.
- W2897829040 hasConceptScore W2897829040C136229726 @default.
- W2897829040 hasConceptScore W2897829040C159985019 @default.
- W2897829040 hasConceptScore W2897829040C171250308 @default.
- W2897829040 hasConceptScore W2897829040C191897082 @default.
- W2897829040 hasConceptScore W2897829040C192562407 @default.
- W2897829040 hasConceptScore W2897829040C2779851234 @default.
- W2897829040 hasConceptScore W2897829040C2780431358 @default.
- W2897829040 hasConceptScore W2897829040C30080830 @default.
- W2897829040 hasConceptScore W2897829040C49892992 @default.
- W2897829040 hasConceptScore W2897829040C71924100 @default.
- W2897829040 hasConceptScore W2897829040C91129048 @default.