Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897834047> ?p ?o ?g. }
- W2897834047 endingPage "19599" @default.
- W2897834047 startingPage "19586" @default.
- W2897834047 abstract "The causative role of G protein–coupled receptor (GPCR) pathway mutations in uveal melanoma (UM) has been well-established. Nearly all UMs bear an activating mutation in a GPCR pathway mediated by G proteins of the Gq/11 family, driving tumor initiation and possibly metastatic progression. Thus, targeting this pathway holds therapeutic promise for managing UM. However, direct targeting of oncogenic Gαq/11 mutants, present in ∼90% of UMs, is complicated by the belief that these mutants structurally resemble active Gαq/11 WT. This notion is solidly founded on previous studies characterizing Gα mutants in which a conserved catalytic glutamine (Gln-209 in Gαq) is replaced by leucine, which leads to GTPase function deficiency and constitutive activation. Whereas Q209L accounts for approximately half of GNAQ mutations in UM, Q209P is as frequent as Q209L and also promotes oncogenesis, but has not been characterized at the molecular level. Here, we characterized the biochemical and signaling properties of Gαq Q209P and found that it is also GTPase-deficient and activates downstream signaling as efficiently as Gαq Q209L. However, Gαq Q209P had distinct molecular and functional features, including in the switch II region of Gαq Q209P, which adopted a conformation different from that of Gαq Q209L or active WT Gαq, resulting in altered binding to effectors, Gβγ, and regulators of G-protein signaling (RGS) proteins. Our findings reveal that the molecular properties of Gαq Q209P are fundamentally different from those in other active Gαq proteins and could be leveraged as a specific vulnerability for the ∼20% of UMs bearing this mutation. The causative role of G protein–coupled receptor (GPCR) pathway mutations in uveal melanoma (UM) has been well-established. Nearly all UMs bear an activating mutation in a GPCR pathway mediated by G proteins of the Gq/11 family, driving tumor initiation and possibly metastatic progression. Thus, targeting this pathway holds therapeutic promise for managing UM. However, direct targeting of oncogenic Gαq/11 mutants, present in ∼90% of UMs, is complicated by the belief that these mutants structurally resemble active Gαq/11 WT. This notion is solidly founded on previous studies characterizing Gα mutants in which a conserved catalytic glutamine (Gln-209 in Gαq) is replaced by leucine, which leads to GTPase function deficiency and constitutive activation. Whereas Q209L accounts for approximately half of GNAQ mutations in UM, Q209P is as frequent as Q209L and also promotes oncogenesis, but has not been characterized at the molecular level. Here, we characterized the biochemical and signaling properties of Gαq Q209P and found that it is also GTPase-deficient and activates downstream signaling as efficiently as Gαq Q209L. However, Gαq Q209P had distinct molecular and functional features, including in the switch II region of Gαq Q209P, which adopted a conformation different from that of Gαq Q209L or active WT Gαq, resulting in altered binding to effectors, Gβγ, and regulators of G-protein signaling (RGS) proteins. Our findings reveal that the molecular properties of Gαq Q209P are fundamentally different from those in other active Gαq proteins and could be leveraged as a specific vulnerability for the ∼20% of UMs bearing this mutation. Uveal melanoma (UM) 2The abbreviations used are: UMuveal melanomaGPCRG protein-coupled receptorGEFguanine nucleotide exchange factorGAPGTPase-activating proteinRGSregulator of G protein signalingRHRGS homologyDHDbl homologyPHpleckstrin homologyGRKG protein–coupled receptor kinaseSREserum response elementM3RM3 muscarinic acetylcholine receptorBRETbioluminescence resonance energy transferPLCphospholipase CMAPKmitogen-activated protein kinaseERKextracellular signal–regulated kinaseaaamino acidSwIIswitch IIGAIPGα-interacting proteinHAhemagglutininNlucnanoluciferaseLICligation-independent cloningPVDFpolyvinylidene difluoridePDBProtein Data BankGTPγSguanosine 5′-3-O-(thio)triphosphate. is the second most frequent melanoma (after cutaneous melanoma). Despite progress in monitoring and detection, survival rates have not improved over the past few decades (1Singh A.D. Turell M.E. Topham A.K. Uveal melanoma: trends in incidence, treatment, and survival.Ophthalmology. 2011; 118 (21704381): 1881-188510.1016/j.ophtha.2011.01.040Abstract Full Text Full Text PDF PubMed Scopus (769) Google Scholar, 2Virgili G. Gatta G. Ciccolallo L. Capocaccia R. Biggeri A. Crocetti E. Lutz J.M. Paci E. EUROCARE Working Group Incidence of uveal melanoma in Europe.Ophthalmology. 2007; 114 (17498805): 2309-231510.1016/j.ophtha.2007.01.032Abstract Full Text Full Text PDF PubMed Scopus (294) Google Scholar). Regardless of tumor classification, UMs are treated by eye enucleation, plaque radiation, or tumor resection, which result in loss of vision (3Pereira P.R. Odashiro A.N. Lim L.A. Miyamoto C. Blanco P.L. Odashiro M. Maloney S. De Souza D.F. Burnier Jr., M.N. Current and emerging treatment options for uveal melanoma.Clin. Ophthalmol. 2013; 7 (24003303): 1669-1682Crossref PubMed Scopus (65) Google Scholar, 4Damato B. Progress in the management of patients with uveal melanoma. The 2012 Ashton Lecture.Eye (Lond.). 2012; 26 (22744385): 1157-117210.1038/eye.2012.126Crossref PubMed Scopus (111) Google Scholar). For the ∼50% of UMs that are metastatic (5Kujala E. Mäkitie T. Kivelä T. Very long-term prognosis of patients with malignant uveal melanoma.Invest. Ophthalmol. Vis. Sci. 2003; 44 (14578381): 4651-465910.1167/iovs.03-0538Crossref PubMed Scopus (707) Google Scholar, 6Kaliki S. Shields C.L. Shields J.A. Uveal melanoma: estimating prognosis.Indian J. Ophthalmol. 2015; 63 (25827538): 93-10210.4103/0301-4738.154367Crossref PubMed Scopus (149) Google Scholar), these treatments do not reduce the probability of mortality. Patients with metastatic UM have a grim median survival of less than 1 year (15% 5-year survival) (7Carvajal R.D. Schwartz G.K. Tezel T. Marr B. Francis J.H. Nathan P.D. Metastatic disease from uveal melanoma: treatment options and future prospects.Br. J. Ophthalmol. 2017; 101 (27574175): 38-4410.1136/bjophthalmol-2016-309034Crossref PubMed Scopus (202) Google Scholar, 8Augsburger J.J. Corrêa Z.M. Shaikh A.H. Effectiveness of treatments for metastatic uveal melanoma.Am. J. Ophthalmol. 2009; 148 (19375060): 119-12710.1016/j.ajo.2009.01.023Abstract Full Text Full Text PDF PubMed Scopus (221) Google Scholar9Amaro A. Gangemi R. Piaggio F. Angelini G. Barisione G. Ferrini S. Pfeffer U. The biology of uveal melanoma.Cancer Metastasis Rev. 2017; 36 (28229253): 109-14010.1007/s10555-017-9663-3Crossref PubMed Scopus (119) Google Scholar). UM is largely insensitive to chemotherapeutics or immune checkpoint inhibitors that have shown efficacy in cutaneous melanomas (7Carvajal R.D. Schwartz G.K. Tezel T. Marr B. Francis J.H. Nathan P.D. Metastatic disease from uveal melanoma: treatment options and future prospects.Br. J. Ophthalmol. 2017; 101 (27574175): 38-4410.1136/bjophthalmol-2016-309034Crossref PubMed Scopus (202) Google Scholar, 9Amaro A. Gangemi R. Piaggio F. Angelini G. Barisione G. Ferrini S. Pfeffer U. The biology of uveal melanoma.Cancer Metastasis Rev. 2017; 36 (28229253): 109-14010.1007/s10555-017-9663-3Crossref PubMed Scopus (119) Google Scholar). This is easily explained by the fact that the oncogenic drivers of UM are different from those of cutaneous melanoma (i.e. ∼90% of UMs are caused by activating mutations in GNAQ or GNA11, the genes encoding the G proteins Gαq and Gα11, and not by mutations in BRAF) (10Onken M.D. Worley L.A. Long M.D. Duan S. Council M.L. Bowcock A.M. Harbour J.W. Oncogenic mutations in GNAQ occur early in uveal melanoma.Invest. Ophthalmol. Vis. Sci. 2008; 49 (18719078): 5230-523410.1167/iovs.08-2145Crossref PubMed Scopus (252) Google Scholar11Van Raamsdonk C.D. Bezrookove V. Green G. Bauer J. Gaugler L. O'Brien J.M. Simpson E.M. Barsh G.S. Bastian B.C. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi.Nature. 2009; 457 (19078957): 599-60210.1038/nature07586Crossref PubMed Scopus (1137) Google Scholar, 12Van Raamsdonk C.D. Griewank K.G. Crosby M.B. Garrido M.C. Vemula S. Wiesner T. Obenauf A.C. Wackernagel W. Green G. Bouvier N. Sozen M.M. Baimukanova G. Roy R. Heguy A. Dolgalev I. Khanin R. Busam K. Speicher M.R. et al.Mutations in GNA11 in uveal melanoma.N. Engl. J. Med. 2010; 363 (21083380): 2191-219910.1056/NEJMoa1000584Crossref PubMed Scopus (1066) Google Scholar, 13Robertson A.G. Shih J. Yau C. Gibb E.A. Oba J. Mungall K.L. Hess J.M. Uzunangelov V. Walter V. Danilova L. Lichtenberg T.M. Kucherlapati M. Kimes P.K. Tang M. Penson A. et al.Integrative analysis identifies four molecular and clinical subsets in uveal melanoma.Cancer Cell. 2017; 32 (28810145): 204-220.e1510.1016/j.ccell.2017.07.003Abstract Full Text Full Text PDF PubMed Scopus (448) Google Scholar14Chua V. Lapadula D. Randolph C. Benovic J.L. Wedegaertner P.B. Aplin A.E. Dysregulated GPCR signaling and therapeutic options in uveal melanoma.Mol. Cancer Res. 2017; 15 (28223438): 501-50610.1158/1541-7786.MCR-17-0007Crossref PubMed Scopus (53) Google Scholar). uveal melanoma G protein-coupled receptor guanine nucleotide exchange factor GTPase-activating protein regulator of G protein signaling RGS homology Dbl homology pleckstrin homology G protein–coupled receptor kinase serum response element M3 muscarinic acetylcholine receptor bioluminescence resonance energy transfer phospholipase C mitogen-activated protein kinase extracellular signal–regulated kinase amino acid switch II Gα-interacting protein hemagglutinin nanoluciferase ligation-independent cloning polyvinylidene difluoride Protein Data Bank guanosine 5′-3-O-(thio)triphosphate. Heterotrimeric G proteins, such as Gq and G11, are composed of a nucleotide-binding Gα subunit and an obligatory Gβγ heterodimer, which form a tight complex in the GDP-bound resting state (15Gilman A.G. G proteins: transducers of receptor-generated signals.Annu. Rev. Biochem. 1987; 56 (3113327): 615-64910.1146/annurev.bi.56.070187.003151Crossref PubMed Scopus (4711) Google Scholar). Upon ligand binding, GPCRs promote their activation by accelerating the exchange of GDP for GTP. In turn, Gα-GTP dissociates from Gβγ, allowing them both to regulate numerous downstream effectors. Cancer-associated mutations in Gαq and Gα11 affect residue Gln-209 in ∼95% of the cases, whereas mutations in Arg-183 are less frequent (11Van Raamsdonk C.D. Bezrookove V. Green G. Bauer J. Gaugler L. O'Brien J.M. Simpson E.M. Barsh G.S. Bastian B.C. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi.Nature. 2009; 457 (19078957): 599-60210.1038/nature07586Crossref PubMed Scopus (1137) Google Scholar, 12Van Raamsdonk C.D. Griewank K.G. Crosby M.B. Garrido M.C. Vemula S. Wiesner T. Obenauf A.C. Wackernagel W. Green G. Bouvier N. Sozen M.M. Baimukanova G. Roy R. Heguy A. Dolgalev I. Khanin R. Busam K. Speicher M.R. et al.Mutations in GNA11 in uveal melanoma.N. Engl. J. Med. 2010; 363 (21083380): 2191-219910.1056/NEJMoa1000584Crossref PubMed Scopus (1066) Google Scholar). These residues are critical for the intrinsic GTPase activity of Gα, and their mutation is known to result in a constitutively active protein (16Der C.J. Finkel T. Cooper G.M. Biological and biochemical properties of human rasH genes mutated at codon 61.Cell. 1986; 44 (3510078): 167-17610.1016/0092-8674(86)90495-2Abstract Full Text PDF PubMed Scopus (401) Google Scholar, 17Coleman D.E. Berghuis A.M. Lee E. Linder M.E. Gilman A.G. Sprang S.R. Structures of active conformations of Giα1 and the mechanism of GTP hydrolysis.Science. 1994; 265 (8073283): 1405-141210.1126/science.8073283Crossref PubMed Scopus (752) Google Scholar18Landis C.A. Masters S.B. Spada A. Pace A.M. Bourne H.R. Vallar L. GTPase inhibiting mutations activate the α chain of Gs and stimulate adenylyl cyclase in human pituitary tumours.Nature. 1989; 340 (2549426): 692-69610.1038/340692a0Crossref PubMed Scopus (1220) Google Scholar). Active Gαq/11 can engage with multiple downstream effectors, which trigger various signaling pathways implicated in cell growth and oncogenic behavior. For instance, active Gαq binds to some PLCβ isoforms, which ultimately promotes activation of the MAPK/ERK pathway via Ca2+/diacylglycerol/protein kinase C (19Gresset A. Sondek J. Harden T.K. The phospholipase C isozymes and their regulation.Subcell. Biochem. 2012; 58 (22403074): 61-9410.1007/978-94-007-3012-0_3Crossref PubMed Scopus (105) Google Scholar, 20Hubbard K.B. Hepler J.R. Cell signalling diversity of the Gqα family of heterotrimeric G proteins.Cell. Signal. 2006; 18 (16182515): 135-15010.1016/j.cellsig.2005.08.004Crossref PubMed Scopus (220) Google Scholar21Kadamur G. Ross E.M. Mammalian phospholipase C.Annu. Rev. Physiol. 2013; 75 (23140367): 127-15410.1146/annurev-physiol-030212-183750Crossref PubMed Scopus (300) Google Scholar). Another major Gαq-dependent mechanism relies on its direct binding and activation of a subfamily of RhoGEFs (22Chikumi H. Vázquez-Prado J. Servitja J.M. Miyazaki H. Gutkind J.S. Potent activation of RhoA by Gαq and Gq-coupled receptors.J. Biol. Chem. 2002; 277 (12016230): 27130-2713410.1074/jbc.M204715200Abstract Full Text Full Text PDF PubMed Scopus (144) Google Scholar, 23Aittaleb M. Boguth C.A. Tesmer J.J. Structure and function of heterotrimeric G protein-regulated Rho guanine nucleotide exchange factors.Mol. Pharmacol. 2010; 77 (19880753): 111-12510.1124/mol.109.061234Crossref PubMed Scopus (118) Google Scholar), such as Trio, which ultimately activate TAZ/YAP to promote oncogenic transformation (24Feng X. Degese M.S. Iglesias-Bartolome R. Vaque J.P. Molinolo A.A. Rodrigues M. Zaidi M.R. Ksander B.R. Merlino G. Sodhi A. Chen Q. Gutkind J.S. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated Rho GTPase signaling circuitry.Cancer Cell. 2014; 25 (24882515): 831-84510.1016/j.ccr.2014.04.016Abstract Full Text Full Text PDF PubMed Scopus (376) Google Scholar, 25Yu F.X. Luo J. Mo J.S. Liu G. Kim Y.C. Meng Z. Zhao L. Peyman G. Ouyang H. Jiang W. Zhao J. Chen X. Zhang L. Wang C.Y. Bastian B.C. et al.Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP.Cancer Cell. 2014; 25 (24882516): 822-83010.1016/j.ccr.2014.04.017Abstract Full Text Full Text PDF PubMed Scopus (329) Google Scholar). Recent evidence indicates that nearly all UMs bear one mutation within this GPCR-driven pathway (13Robertson A.G. Shih J. Yau C. Gibb E.A. Oba J. Mungall K.L. Hess J.M. Uzunangelov V. Walter V. Danilova L. Lichtenberg T.M. Kucherlapati M. Kimes P.K. Tang M. Penson A. et al.Integrative analysis identifies four molecular and clinical subsets in uveal melanoma.Cancer Cell. 2017; 32 (28810145): 204-220.e1510.1016/j.ccell.2017.07.003Abstract Full Text Full Text PDF PubMed Scopus (448) Google Scholar, 14Chua V. Lapadula D. Randolph C. Benovic J.L. Wedegaertner P.B. Aplin A.E. Dysregulated GPCR signaling and therapeutic options in uveal melanoma.Mol. Cancer Res. 2017; 15 (28223438): 501-50610.1158/1541-7786.MCR-17-0007Crossref PubMed Scopus (53) Google Scholar, 26Field M.G. Durante M.A. Anbunathan H. Cai L.Z. Decatur C.L. Bowcock A.M. Kurtenbach S. Harbour J.W. Punctuated evolution of canonical genomic aberrations in uveal melanoma.Nat. Commun. 2018; 9 (29317634): 11610.1038/s41467-017-02428-wCrossref PubMed Scopus (110) Google Scholar). In addition to mutations in GNAQ or GNA11 found in ∼90% of the cases, there are also mutually exclusive mutations in CYSLTR2 (encoding the GPCR cysteinyl leukotriene receptor 2, CysLT2R) (27Moore A.R. Ceraudo E. Sher J.J. Guan Y. Shoushtari A.N. Chang M.T. Zhang J.Q. Walczak E.G. Kazmi M.A. Taylor B.S. Huber T. Chi P. Sakmar T.P. Chen Y. Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma.Nat. Genet. 2016; 48 (27089179): 675-68010.1038/ng.3549Crossref PubMed Scopus (176) Google Scholar) and PLCB4 (encoding the G protein effector PLCβ4) (28Johansson P. Aoude L.G. Wadt K. Glasson W.J. Warrier S.K. Hewitt A.W. Kiilgaard J.F. Heegaard S. Isaacs T. Franchina M. Ingvar C. Vermeulen T. Whitehead K.J. Schmidt C.W. Palmer J.M. et al.Deep sequencing of uveal melanoma identifies a recurrent mutation in PLCB4.Oncotarget. 2016; 7 (26683228): 4624-4631Crossref PubMed Scopus (182) Google Scholar), which operate directly upstream or downstream, respectively, of Gαq/11. Interestingly, a similar pattern of mutually exclusive mutations in GNAQ, GNA11, CYSLTR2, and PLCB4 has been reported to occur in leptomeningeal melanocytic tumors (29van de Nes J.A.P. Koelsche C. Gessi M. Möller I. Sucker A. Scolyer R.A. Buckland M.E. Pietsch T. Murali R. Schadendorf D. Griewank K.G. Activating CYSLTR2 and PLCB4 mutations in primary leptomeningeal melanocytic tumors.J. Invest. Dermatol. 2017; 137 (28499758): 2033-203510.1016/j.jid.2017.04.022Abstract Full Text Full Text PDF PubMed Scopus (18) Google Scholar, 30Küsters-Vandevelde H.V. Küsters B. van Engen-van Grunsven A.C. Groenen P.J. Wesseling P. Blokx W.A. Primary melanocytic tumors of the central nervous system: a review with focus on molecular aspects.Brain Pathol. 2015; 25 (25534128): 209-22610.1111/bpa.12241Crossref PubMed Scopus (67) Google Scholar31Küsters-Vandevelde H.V. van Engen-van Grunsven I.A. Coupland S.E. Lake S.L. Rijntjes J. Pfundt R. Küsters B. Wesseling P. Blokx W.A. Groenen P.J. Mutations in g protein encoding genes and chromosomal alterations in primary leptomeningeal melanocytic neoplasms.Pathol. Oncol. Res. 2015; 21 (25315378): 439-44710.1007/s12253-014-9841-3Crossref PubMed Scopus (34) Google Scholar), another type of noncutaneous melanoma that afflicts the central nervous system. Given the insensitivity of UM to therapies used for other types of melanoma, targeting the signaling mechanisms triggered by Gαq/11 has been in the limelight for the development of novel therapeutics for this type of cancer (32Luke J.J. Triozzi P.L. McKenna K.C. Van Meir E.G. Gershenwald J.E. Bastian B.C. Gutkind J.S. Bowcock A.M. Streicher H.Z. Patel P.M. Sato T. Sossman J.A. Sznol M. Welch J. Thurin M. et al.Biology of advanced uveal melanoma and next steps for clinical therapeutics.Pigment Cell Melanoma Res. 2015; 28 (25113308): 135-14710.1111/pcmr.12304Crossref PubMed Scopus (69) Google Scholar). Their suitability as targets is supported by many lines of evidence. For example, expression of the active G protein mutants in nontransformed cells is oncogenic (11Van Raamsdonk C.D. Bezrookove V. Green G. Bauer J. Gaugler L. O'Brien J.M. Simpson E.M. Barsh G.S. Bastian B.C. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi.Nature. 2009; 457 (19078957): 599-60210.1038/nature07586Crossref PubMed Scopus (1137) Google Scholar, 12Van Raamsdonk C.D. Griewank K.G. Crosby M.B. Garrido M.C. Vemula S. Wiesner T. Obenauf A.C. Wackernagel W. Green G. Bouvier N. Sozen M.M. Baimukanova G. Roy R. Heguy A. Dolgalev I. Khanin R. Busam K. Speicher M.R. et al.Mutations in GNA11 in uveal melanoma.N. Engl. J. Med. 2010; 363 (21083380): 2191-219910.1056/NEJMoa1000584Crossref PubMed Scopus (1066) Google Scholar, 33Kalinec G. Nazarali A.J. Hermouet S. Xu N. Gutkind J.S. Mutated α subunit of the Gq protein induces malignant transformation in NIH 3T3 cells.Mol. Cell. Biol. 1992; 12 (1328859): 4687-469310.1128/MCB.12.10.4687Crossref PubMed Google Scholar). Similarly, mouse models in which activated Gαq or Gα11 are expressed in melanocytes develop metastatic UM (34Huang J.L. Urtatiz O. Van Raamsdonk C.D. Oncogenic G protein GNAQ induces uveal melanoma and intravasation in mice.Cancer Res. 2015; 75 (26113083): 3384-339710.1158/0008-5472.CAN-14-3229Crossref PubMed Scopus (59) Google Scholar, 35Moore A.R. Ran L. Guan Y. Sher J.J. Hitchman T.D. Zhang J.Q. Hwang C. Walzak E.G. Shoushtari A.N. Monette S. Murali R. Wiesner T. Griewank K.G. Chi P. Chen Y. GNA11 Q209L mouse model reveals RasGRP3 as an essential signaling node in uveal melanoma.Cell Rep. 2018; 22 (29490280): 2455-246810.1016/j.celrep.2018.01.081Abstract Full Text Full Text PDF PubMed Scopus (43) Google Scholar). Importantly from the standpoint of therapeutic targeting, genetic disruption of mutant Gαq/11 or downstream signaling effectors in UM cells impairs proliferation and/or tumor growth in mice (24Feng X. Degese M.S. Iglesias-Bartolome R. Vaque J.P. Molinolo A.A. Rodrigues M. Zaidi M.R. Ksander B.R. Merlino G. Sodhi A. Chen Q. Gutkind J.S. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated Rho GTPase signaling circuitry.Cancer Cell. 2014; 25 (24882515): 831-84510.1016/j.ccr.2014.04.016Abstract Full Text Full Text PDF PubMed Scopus (376) Google Scholar, 25Yu F.X. Luo J. Mo J.S. Liu G. Kim Y.C. Meng Z. Zhao L. Peyman G. Ouyang H. Jiang W. Zhao J. Chen X. Zhang L. Wang C.Y. Bastian B.C. et al.Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP.Cancer Cell. 2014; 25 (24882516): 822-83010.1016/j.ccr.2014.04.017Abstract Full Text Full Text PDF PubMed Scopus (329) Google Scholar, 36Chen X. Wu Q. Depeille P. Chen P. Thornton S. Kalirai H. Coupland S.E. Roose J.P. Bastian B.C. RasGRP3 mediates MAPK pathway activation in GNAQ mutant uveal melanoma.Cancer Cell. 2017; 31 (28486107): 685-696.e610.1016/j.ccell.2017.04.002Abstract Full Text Full Text PDF PubMed Scopus (83) Google Scholar, 37Vaqué J.P. Dorsam R.T. Feng X. Iglesias-Bartolome R. Forsthoefel D.J. Chen Q. Debant A. Seeger M.A. Ksander B.R. Teramoto H. Gutkind J.S. A genome-wide RNAi screen reveals a Trio-regulated Rho GTPase circuitry transducing mitogenic signals initiated by G protein-coupled receptors.Mol. Cell. 2013; 49 (23177739): 94-10810.1016/j.molcel.2012.10.018Abstract Full Text Full Text PDF PubMed Scopus (107) Google Scholar38Yoo J.H. Shi D.S. Grossmann A.H. Sorensen L.K. Tong Z. Mleynek T.M. Rogers A. Zhu W. Richards J.R. Winter J.M. Zhu J. Dunn C. Bajji A. Shenderovich M. Mueller A.L. et al.ARF6 is an actionable node that orchestrates oncogenic GNAQ signaling in uveal melanoma.Cancer Cell. 2016; 29 (27265506): 889-90410.1016/j.ccell.2016.04.015Abstract Full Text Full Text PDF PubMed Scopus (94) Google Scholar). Unfortunately, attempts to pharmacologically target signaling pathways activated downstream of mutant Gαq/11 have not been successful, even when using multiple drugs in combination (7Carvajal R.D. Schwartz G.K. Tezel T. Marr B. Francis J.H. Nathan P.D. Metastatic disease from uveal melanoma: treatment options and future prospects.Br. J. Ophthalmol. 2017; 101 (27574175): 38-4410.1136/bjophthalmol-2016-309034Crossref PubMed Scopus (202) Google Scholar). A likely explanation for the inefficiency of these approaches in blunting UM is that Gαq/11 activates a complex network of signaling effectors (14Chua V. Lapadula D. Randolph C. Benovic J.L. Wedegaertner P.B. Aplin A.E. Dysregulated GPCR signaling and therapeutic options in uveal melanoma.Mol. Cancer Res. 2017; 15 (28223438): 501-50610.1158/1541-7786.MCR-17-0007Crossref PubMed Scopus (53) Google Scholar), such that targeting individual nodes of this network is insufficient to achieve therapeutic effects. Thus, direct inhibition of mutant Gαq/11 may be required to completely inhibit all the network components required to promote UM and achieve sufficient efficacy and therapeutic benefit. Direct targeting of oncogenic Gαq/11 mutants is a reasonable therapeutic approach, although it presents challenges, as these mutants are predicted to closely resemble active Gαq/11 WT. If so, strategies to inhibit mutant Gαq/11 would be expected to also cause inhibition of Gαq/11 WT, which could result in undesired side effects related to the major physiological functions of these G proteins (e.g. double Gαq/Gα11 knockout mice are nonviable (39Offermanns S. Zhao L.P. Gohla A. Sarosi I. Simon M.I. Wilkie T.M. Embryonic cardiomyocyte hypoplasia and craniofacial defects in Gαq/Gα11-mutant mice.EMBO J. 1998; 17 (9687499): 4304-431210.1093/emboj/17.15.4304Crossref PubMed Scopus (204) Google Scholar)). Here, we present evidence that one of the most frequent Gαq mutants in UM, Q209P, displays properties different from that of active Gαq WT that could be leveraged to achieve specific targeting at the molecular level. Approximately 40–45% of UMs have mutations in residue Gln-209 of Gαq, which are split evenly between Q209L and Q209P (11Van Raamsdonk C.D. Bezrookove V. Green G. Bauer J. Gaugler L. O'Brien J.M. Simpson E.M. Barsh G.S. Bastian B.C. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi.Nature. 2009; 457 (19078957): 599-60210.1038/nature07586Crossref PubMed Scopus (1137) Google Scholar, 12Van Raamsdonk C.D. Griewank K.G. Crosby M.B. Garrido M.C. Vemula S. Wiesner T. Obenauf A.C. Wackernagel W. Green G. Bouvier N. Sozen M.M. Baimukanova G. Roy R. Heguy A. Dolgalev I. Khanin R. Busam K. Speicher M.R. et al.Mutations in GNA11 in uveal melanoma.N. Engl. J. Med. 2010; 363 (21083380): 2191-219910.1056/NEJMoa1000584Crossref PubMed Scopus (1066) Google Scholar13Robertson A.G. Shih J. Yau C. Gibb E.A. Oba J. Mungall K.L. Hess J.M. Uzunangelov V. Walter V. Danilova L. Lichtenberg T.M. Kucherlapati M. Kimes P.K. Tang M. Penson A. et al.Integrative analysis identifies four molecular and clinical subsets in uveal melanoma.Cancer Cell. 2017; 32 (28810145): 204-220.e1510.1016/j.ccell.2017.07.003Abstract Full Text Full Text PDF PubMed Scopus (448) Google Scholar). Whereas Gαq Q209L has been extensively characterized and used as a tool mutant to study Gq signaling for decades, Gαq Q209P has not been adequately studied. Gαq Q209P is not only as frequent as Gαq Q209L in tumors, but it is also the driver mutation of many of the UM cell lines commonly used for cell biological and pharmacological experimentation, such as Mel270, OMM1.3 (also known as OMM2.3), OMM2.2, OMM2.5, and UPMM3 (25Yu F.X. Luo J. Mo J.S. Liu G. Kim Y.C. Meng Z. Zhao L. Peyman G. Ouyang H. Jiang W. Zhao J. Chen X. Zhang L. Wang C.Y. Bastian B.C. et al.Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP.Cancer Cell. 2014; 25 (24882516): 822-83010.1016/j.ccr.2014.04.017Abstract Full Text Full Text PDF PubMed Scopus (329) Google Scholar, 40Griewank K.G. Yu X. Khalili J. Sozen M.M. Stempke-Hale K. Bernatchez C. Wardell S. Bastian B.C. Woodman S.E. Genetic and molecular characterization of uveal melanoma cell lines.Pigment Cell Melanoma Res. 2012; 25 (22236444): 182-18710.1111/j.1755-148X.2012.00971.xCrossref PubMed Scopus (82) Google Scholar). In fact, it has been shown that depletion of Gαq Q209P and/or signaling components downstream of it from UM cells decreases proliferation and/or tumor growth (24Feng X. Degese M.S. Iglesias-Bartolome R. Vaque J.P. Molinolo A.A. Rodrigues M. Zaidi M.R. Ksander B.R. Merlino G. Sodhi A. Chen Q. Gutkind J.S. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated Rho GTPase signaling circuitry.Cancer Cell. 2014; 25 (24882515): 831-84510.1016/j.ccr.2014.04.016Abstract Full Text Full Text PDF PubMed Scopus (376) Google Scholar, 36Chen X. Wu Q. Depeille P. Chen P. Thornton S. Kalirai H. Coupland S.E. Roose J.P. Bastian B.C. RasGRP3 mediates MAPK pathway activation in GNAQ mutant uveal melanoma.Cancer Cell. 2017; 31 (28486107): 685-696.e610.1016/j.ccell.2017.04.002Abstract Full Text Full Text PDF PubMed Scopus (83) Google Scholar, 37Vaqué J.P. Dorsam R.T. Feng X. Iglesias-Bartolome R. Forsthoefel D.J. Chen Q. Debant A. Seeger M.A. Ksander B.R. Teramoto H. Gutkind J.S. A genome-wide RNAi screen reveals a Trio-regulated Rho GTPase circuitry transducing mitogenic signals initiated by G protein-coupled receptors.Mol. Cell. 2013; 49 (23177739): 94-10810.1016/j.molcel.2012.10.018Abstract Full Text Full Text PDF PubMed Scopus (107) Google Scholar). Motivated by the fundamental gap in knowledge about the molecular properties of Gαq Q209P, we characterized this mutant by direct comparison with Gαq Q209L, to discover that while leading to signaling hyperactivation, as expected, it possessed structural features different from other active Gαq species, including active Gαq WT and the Gαq Q209L mutant. From a broader perspective, our findings reveal novel mechanistic insights into how G protein mutants lead to oncogenesis and into their possible suitability as direct targets for pharmacological intervention. To start characterizing the properties of Gαq Q209P, we compared its ability to bind effectors with that of Gαq Q209L or active Gαq WT. First, we investigated binding to GRK2. GRK2 was the first protein co-crystallized with active Gαq (41Tesmer V.M. Kawano T. Shankaranarayanan A. Kozasa T. Tesmer J.J. Snapshot of activated G proteins at the membrane: the Gαq-GRK2-Gβγ complex.Science. 2005; 310 (16339447): 1686-169010.1126/science.1118890Crossref PubMed Scopus (246) Google Scholar). Based on the atomic resolution structure of this complex, it was proposed, and subsequently confirmed, that GRK2 binding to Gαq has effector-like properties. We expressed Gαq WT, Gαq Q209L, and Gαq Q209P in HEK293T cells and carried out pulldowns with the RGS homology (RH) domain of GRK2 (aa 45–178) fused to GST. Cell lysis and pulldowns were carried out rapidly (∼1.5 h from lysis to protein complex elution) at 4 °C in a buffer without Mg2+ supplemented with EDTA to minimize GTP hydrolysis during the assay. As a positive control, we also included a condition in which lysates of cells expressing Gαq WT were supplemented with Mg·AlF4−, which mimics the GTP-bound transition state of the G protein that binds with high affinity to effectors. As expected, Gαq WT loaded with Mg·AlF4− bound robustly to GRK2, whereas Gαq WT in the absence of Mg·AlF4−, presumably in its GDP-bound inactive conformation, did not (Fig. 1A). Also, as expected, Gαq Q209L bound to GRK2 as much as Gαq WT supplemented with Mg·AlF4−, which is consistent with its predicted constitutive GTP-bound status. Surprisingly, Gαq" @default.
- W2897834047 created "2018-10-26" @default.
- W2897834047 creator A5010653678 @default.
- W2897834047 creator A5011790462 @default.
- W2897834047 creator A5020749227 @default.
- W2897834047 creator A5035701486 @default.
- W2897834047 creator A5040969304 @default.
- W2897834047 creator A5056991064 @default.
- W2897834047 creator A5070810300 @default.
- W2897834047 creator A5071038962 @default.
- W2897834047 date "2018-12-01" @default.
- W2897834047 modified "2023-10-18" @default.
- W2897834047 title "Atypical activation of the G protein Gαq by the oncogenic mutation Q209P" @default.
- W2897834047 cites W1543897018 @default.
- W2897834047 cites W1606090338 @default.
- W2897834047 cites W1623804763 @default.
- W2897834047 cites W1785315021 @default.
- W2897834047 cites W1880913451 @default.
- W2897834047 cites W1927136327 @default.
- W2897834047 cites W1966935234 @default.
- W2897834047 cites W1969451894 @default.
- W2897834047 cites W199111168 @default.
- W2897834047 cites W1997074783 @default.
- W2897834047 cites W1997335773 @default.
- W2897834047 cites W2006031720 @default.
- W2897834047 cites W2015893386 @default.
- W2897834047 cites W2016634228 @default.
- W2897834047 cites W2017118651 @default.
- W2897834047 cites W2018032989 @default.
- W2897834047 cites W2018172717 @default.
- W2897834047 cites W2020114437 @default.
- W2897834047 cites W2022754746 @default.
- W2897834047 cites W2024283519 @default.
- W2897834047 cites W2029445497 @default.
- W2897834047 cites W2032240223 @default.
- W2897834047 cites W2039094079 @default.
- W2897834047 cites W2040217609 @default.
- W2897834047 cites W2041755933 @default.
- W2897834047 cites W2049003705 @default.
- W2897834047 cites W2051144764 @default.
- W2897834047 cites W2053520756 @default.
- W2897834047 cites W2055835855 @default.
- W2897834047 cites W2058901458 @default.
- W2897834047 cites W2063308273 @default.
- W2897834047 cites W2064297593 @default.
- W2897834047 cites W2066076157 @default.
- W2897834047 cites W2069547389 @default.
- W2897834047 cites W2070382741 @default.
- W2897834047 cites W2077517114 @default.
- W2897834047 cites W2080854025 @default.
- W2897834047 cites W2080875376 @default.
- W2897834047 cites W2081346423 @default.
- W2897834047 cites W2083009544 @default.
- W2897834047 cites W2089741493 @default.
- W2897834047 cites W2089767259 @default.
- W2897834047 cites W2092622990 @default.
- W2897834047 cites W2095769092 @default.
- W2897834047 cites W2097027924 @default.
- W2897834047 cites W2114460420 @default.
- W2897834047 cites W2116596094 @default.
- W2897834047 cites W2117913181 @default.
- W2897834047 cites W2122979626 @default.
- W2897834047 cites W2126463310 @default.
- W2897834047 cites W2127728515 @default.
- W2897834047 cites W2127811150 @default.
- W2897834047 cites W2127958833 @default.
- W2897834047 cites W2134092694 @default.
- W2897834047 cites W2136906322 @default.
- W2897834047 cites W2138314961 @default.
- W2897834047 cites W2140139975 @default.
- W2897834047 cites W2143878396 @default.
- W2897834047 cites W2152181435 @default.
- W2897834047 cites W2184364461 @default.
- W2897834047 cites W2235016411 @default.
- W2897834047 cites W2280440990 @default.
- W2897834047 cites W2339527447 @default.
- W2897834047 cites W2341757648 @default.
- W2897834047 cites W2411856404 @default.
- W2897834047 cites W2516337088 @default.
- W2897834047 cites W2590038448 @default.
- W2897834047 cites W2590536177 @default.
- W2897834047 cites W2613209365 @default.
- W2897834047 cites W2613393322 @default.
- W2897834047 cites W2745658163 @default.
- W2897834047 cites W2755831226 @default.
- W2897834047 cites W2770090742 @default.
- W2897834047 cites W2782326528 @default.
- W2897834047 cites W2788817650 @default.
- W2897834047 cites W2796302334 @default.
- W2897834047 cites W2890746219 @default.
- W2897834047 cites W338648647 @default.
- W2897834047 doi "https://doi.org/10.1074/jbc.ra118.005291" @default.
- W2897834047 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6314142" @default.
- W2897834047 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30352874" @default.
- W2897834047 hasPublicationYear "2018" @default.
- W2897834047 type Work @default.
- W2897834047 sameAs 2897834047 @default.
- W2897834047 citedByCount "25" @default.