Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897840193> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2897840193 abstract "Insufficient training data is a serious problem in all domains related to bioinformatics. Large-scale annotated electroencephalography (EEG) datasets are almost impossible to acquire because biological data acquisition is challenging and quality annotation is costly. Transfer learning relaxes the hypothesis that the training data must be independent and identically distributed (i.i. d.) with the test data, which motivates us to use transfer learning to solve the problem of insufficient training data in bioinformatics. We propose a new approach to transfer knowledge via a deep transfer learning framework, which includes an adaptive sample selection algorithm and a joint adversarial training algorithm. The adaptive sample selection algorithm dynamically adjusts the sample weights during the training process according to the distance between the source domain and the target domain. The joint adversarial training algorithm forces the network to learn a feature extractor suitable for the target domain based on a dataset from the source domain by using an adversarial network and a specific loss function. The experiments demonstrate that our approach has many advantages, such as robustness and accuracy, when applied to EEG classification tasks." @default.
- W2897840193 created "2018-10-26" @default.
- W2897840193 creator A5041105948 @default.
- W2897840193 creator A5046173951 @default.
- W2897840193 creator A5057694362 @default.
- W2897840193 creator A5065667064 @default.
- W2897840193 creator A5065907658 @default.
- W2897840193 creator A5084899203 @default.
- W2897840193 date "2018-07-01" @default.
- W2897840193 modified "2023-09-24" @default.
- W2897840193 title "Adaptive Adversarial Transfer Learning for Electroencephalography Classification" @default.
- W2897840193 cites W1436896694 @default.
- W2897840193 cites W1967993123 @default.
- W2897840193 cites W2025198378 @default.
- W2897840193 cites W2044251627 @default.
- W2897840193 cites W2096943734 @default.
- W2897840193 cites W2100664256 @default.
- W2897840193 cites W2142280324 @default.
- W2897840193 cites W2150590430 @default.
- W2897840193 cites W2165698076 @default.
- W2897840193 cites W2176950688 @default.
- W2897840193 cites W2214409633 @default.
- W2897840193 cites W2306570595 @default.
- W2897840193 cites W2632654127 @default.
- W2897840193 cites W2726279040 @default.
- W2897840193 cites W2757251151 @default.
- W2897840193 cites W2919115771 @default.
- W2897840193 cites W2963548298 @default.
- W2897840193 cites W3124617164 @default.
- W2897840193 doi "https://doi.org/10.1109/ijcnn.2018.8489116" @default.
- W2897840193 hasPublicationYear "2018" @default.
- W2897840193 type Work @default.
- W2897840193 sameAs 2897840193 @default.
- W2897840193 citedByCount "3" @default.
- W2897840193 countsByYear W28978401932019 @default.
- W2897840193 countsByYear W28978401932020 @default.
- W2897840193 countsByYear W28978401932022 @default.
- W2897840193 crossrefType "proceedings-article" @default.
- W2897840193 hasAuthorship W2897840193A5041105948 @default.
- W2897840193 hasAuthorship W2897840193A5046173951 @default.
- W2897840193 hasAuthorship W2897840193A5057694362 @default.
- W2897840193 hasAuthorship W2897840193A5065667064 @default.
- W2897840193 hasAuthorship W2897840193A5065907658 @default.
- W2897840193 hasAuthorship W2897840193A5084899203 @default.
- W2897840193 hasConcept C119857082 @default.
- W2897840193 hasConcept C150899416 @default.
- W2897840193 hasConcept C153180895 @default.
- W2897840193 hasConcept C154945302 @default.
- W2897840193 hasConcept C15744967 @default.
- W2897840193 hasConcept C169760540 @default.
- W2897840193 hasConcept C37736160 @default.
- W2897840193 hasConcept C41008148 @default.
- W2897840193 hasConcept C522805319 @default.
- W2897840193 hasConceptScore W2897840193C119857082 @default.
- W2897840193 hasConceptScore W2897840193C150899416 @default.
- W2897840193 hasConceptScore W2897840193C153180895 @default.
- W2897840193 hasConceptScore W2897840193C154945302 @default.
- W2897840193 hasConceptScore W2897840193C15744967 @default.
- W2897840193 hasConceptScore W2897840193C169760540 @default.
- W2897840193 hasConceptScore W2897840193C37736160 @default.
- W2897840193 hasConceptScore W2897840193C41008148 @default.
- W2897840193 hasConceptScore W2897840193C522805319 @default.
- W2897840193 hasLocation W28978401931 @default.
- W2897840193 hasOpenAccess W2897840193 @default.
- W2897840193 hasPrimaryLocation W28978401931 @default.
- W2897840193 hasRelatedWork W2960456850 @default.
- W2897840193 hasRelatedWork W3021430260 @default.
- W2897840193 hasRelatedWork W3090986316 @default.
- W2897840193 hasRelatedWork W3133293092 @default.
- W2897840193 hasRelatedWork W3192503984 @default.
- W2897840193 hasRelatedWork W3214552351 @default.
- W2897840193 hasRelatedWork W4281382123 @default.
- W2897840193 hasRelatedWork W4281645081 @default.
- W2897840193 hasRelatedWork W4294306704 @default.
- W2897840193 hasRelatedWork W4308262314 @default.
- W2897840193 isParatext "false" @default.
- W2897840193 isRetracted "false" @default.
- W2897840193 magId "2897840193" @default.
- W2897840193 workType "article" @default.