Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897840973> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2897840973 endingPage "58" @default.
- W2897840973 startingPage "46" @default.
- W2897840973 abstract "Edge detection has been a fundamental and important task in computer vision for many years, but it is still a challenging problem in real-time applications, especially for unsupervised edge detection, where ground truth is not available. Typical fast edge detection approaches, such as the single threshold method, are expensive to achieve in unsupervised edge detection. This study proposes a Genetic Programming (GP) based algorithm to quickly and automatically extract binary edges in an unsupervised manner. We investigate how GP can effectively evolve an edge detector from a single image without ground truth, and whether the evolved edge detector can be directly applied to other unseen/test images. The proposed method is examined and compared with a recent GP method and the Canny method on the Berkeley segmentation dataset. The results show that the proposed GP method has the ability to effectively evolve edge detectors by using only a single image as the whole training set, and significantly outperforms the two methods it is compared to. Furthermore, the binary edges detected by the evolved edge detectors have a good balance between recall and precision." @default.
- W2897840973 created "2018-10-26" @default.
- W2897840973 creator A5001214025 @default.
- W2897840973 creator A5005312124 @default.
- W2897840973 creator A5051439492 @default.
- W2897840973 creator A5073062193 @default.
- W2897840973 date "2018-11-01" @default.
- W2897840973 modified "2023-10-16" @default.
- W2897840973 title "Fast Unsupervised Edge Detection Using Genetic Programming [Application Notes]" @default.
- W2897840973 cites W122212618 @default.
- W2897840973 cites W1500510775 @default.
- W2897840973 cites W1560955408 @default.
- W2897840973 cites W1760917123 @default.
- W2897840973 cites W1964508600 @default.
- W2897840973 cites W1971646495 @default.
- W2897840973 cites W1973494573 @default.
- W2897840973 cites W1974342535 @default.
- W2897840973 cites W1975580029 @default.
- W2897840973 cites W1976803039 @default.
- W2897840973 cites W1996070955 @default.
- W2897840973 cites W1998409879 @default.
- W2897840973 cites W2001028968 @default.
- W2897840973 cites W2010774590 @default.
- W2897840973 cites W2028823217 @default.
- W2897840973 cites W2051308101 @default.
- W2897840973 cites W2056011345 @default.
- W2897840973 cites W2062432103 @default.
- W2897840973 cites W2072332511 @default.
- W2897840973 cites W2078835246 @default.
- W2897840973 cites W2082250641 @default.
- W2897840973 cites W2086936347 @default.
- W2897840973 cites W2090901433 @default.
- W2897840973 cites W2099552778 @default.
- W2897840973 cites W2100208842 @default.
- W2897840973 cites W2102571968 @default.
- W2897840973 cites W2104095591 @default.
- W2897840973 cites W2114376712 @default.
- W2897840973 cites W2114996784 @default.
- W2897840973 cites W2115733720 @default.
- W2897840973 cites W2116040950 @default.
- W2897840973 cites W2116216752 @default.
- W2897840973 cites W2117193984 @default.
- W2897840973 cites W2119823327 @default.
- W2897840973 cites W2133003941 @default.
- W2897840973 cites W2133059825 @default.
- W2897840973 cites W2145023731 @default.
- W2897840973 cites W2148118082 @default.
- W2897840973 cites W2152433952 @default.
- W2897840973 cites W2158008371 @default.
- W2897840973 cites W2609636286 @default.
- W2897840973 cites W2962958090 @default.
- W2897840973 cites W343494183 @default.
- W2897840973 doi "https://doi.org/10.1109/mci.2018.2866729" @default.
- W2897840973 hasPublicationYear "2018" @default.
- W2897840973 type Work @default.
- W2897840973 sameAs 2897840973 @default.
- W2897840973 citedByCount "5" @default.
- W2897840973 countsByYear W28978409732022 @default.
- W2897840973 countsByYear W28978409732023 @default.
- W2897840973 crossrefType "journal-article" @default.
- W2897840973 hasAuthorship W2897840973A5001214025 @default.
- W2897840973 hasAuthorship W2897840973A5005312124 @default.
- W2897840973 hasAuthorship W2897840973A5051439492 @default.
- W2897840973 hasAuthorship W2897840973A5073062193 @default.
- W2897840973 hasBestOaLocation W28978409731 @default.
- W2897840973 hasConcept C110332635 @default.
- W2897840973 hasConcept C115961682 @default.
- W2897840973 hasConcept C153180895 @default.
- W2897840973 hasConcept C154945302 @default.
- W2897840973 hasConcept C193536780 @default.
- W2897840973 hasConcept C41008148 @default.
- W2897840973 hasConcept C9417928 @default.
- W2897840973 hasConceptScore W2897840973C110332635 @default.
- W2897840973 hasConceptScore W2897840973C115961682 @default.
- W2897840973 hasConceptScore W2897840973C153180895 @default.
- W2897840973 hasConceptScore W2897840973C154945302 @default.
- W2897840973 hasConceptScore W2897840973C193536780 @default.
- W2897840973 hasConceptScore W2897840973C41008148 @default.
- W2897840973 hasConceptScore W2897840973C9417928 @default.
- W2897840973 hasIssue "4" @default.
- W2897840973 hasLocation W28978409731 @default.
- W2897840973 hasOpenAccess W2897840973 @default.
- W2897840973 hasPrimaryLocation W28978409731 @default.
- W2897840973 hasRelatedWork W1775397219 @default.
- W2897840973 hasRelatedWork W2127830774 @default.
- W2897840973 hasRelatedWork W2154392078 @default.
- W2897840973 hasRelatedWork W2154953197 @default.
- W2897840973 hasRelatedWork W2168555063 @default.
- W2897840973 hasRelatedWork W2199294199 @default.
- W2897840973 hasRelatedWork W2206391761 @default.
- W2897840973 hasRelatedWork W2388033732 @default.
- W2897840973 hasRelatedWork W2591040171 @default.
- W2897840973 hasRelatedWork W2969037885 @default.
- W2897840973 hasVolume "13" @default.
- W2897840973 isParatext "false" @default.
- W2897840973 isRetracted "false" @default.
- W2897840973 magId "2897840973" @default.
- W2897840973 workType "article" @default.