Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897841402> ?p ?o ?g. }
- W2897841402 endingPage "9877" @default.
- W2897841402 startingPage "9868" @default.
- W2897841402 abstract "Recent years have witnessed the promising future of hashing in the industrial applications for fast similarity retrieval. In this paper, we propose a novel supervised hashing method for large-scale cross-media search, termed self-supervised deep multimodal hashing (SSDMH), which learns unified hash codes as well as deep hash functions for different modalities in a self-supervised manner. With the proposed regularized binary latent model, unified binary codes can be solved directly without relaxation strategy while retaining the neighborhood structures by the graph regularization term. Moreover, we propose a new discrete optimization solution, termed as binary gradient descent, which aims at improving the optimization efficiency toward real-time operation. Extensive experiments on three benchmark data sets demonstrate the superiority of SSDMH over state-of-the-art cross-media hashing approaches." @default.
- W2897841402 created "2018-10-26" @default.
- W2897841402 creator A5015525872 @default.
- W2897841402 creator A5046605531 @default.
- W2897841402 creator A5057732142 @default.
- W2897841402 creator A5059068585 @default.
- W2897841402 creator A5069951778 @default.
- W2897841402 creator A5077882811 @default.
- W2897841402 date "2019-12-01" @default.
- W2897841402 modified "2023-09-30" @default.
- W2897841402 title "Joint Image-Text Hashing for Fast Large-Scale Cross-Media Retrieval Using Self-Supervised Deep Learning" @default.
- W2897841402 cites W1528479218 @default.
- W2897841402 cites W1910300841 @default.
- W2897841402 cites W1922199343 @default.
- W2897841402 cites W1970055505 @default.
- W2897841402 cites W1991405421 @default.
- W2897841402 cites W2012673871 @default.
- W2897841402 cites W2029939664 @default.
- W2897841402 cites W2049993534 @default.
- W2897841402 cites W2106277773 @default.
- W2897841402 cites W2124001136 @default.
- W2897841402 cites W2155803963 @default.
- W2897841402 cites W2155893237 @default.
- W2897841402 cites W2326180695 @default.
- W2897841402 cites W2345649690 @default.
- W2897841402 cites W2388114291 @default.
- W2897841402 cites W2415956510 @default.
- W2897841402 cites W2418353079 @default.
- W2897841402 cites W2512032049 @default.
- W2897841402 cites W2520861906 @default.
- W2897841402 cites W2522148122 @default.
- W2897841402 cites W2593190442 @default.
- W2897841402 cites W2594785588 @default.
- W2897841402 cites W2612114597 @default.
- W2897841402 cites W2618530766 @default.
- W2897841402 cites W2733636222 @default.
- W2897841402 cites W2749439257 @default.
- W2897841402 cites W2781821509 @default.
- W2897841402 cites W2809153957 @default.
- W2897841402 cites W3099831940 @default.
- W2897841402 cites W3102154133 @default.
- W2897841402 doi "https://doi.org/10.1109/tie.2018.2873547" @default.
- W2897841402 hasPublicationYear "2019" @default.
- W2897841402 type Work @default.
- W2897841402 sameAs 2897841402 @default.
- W2897841402 citedByCount "61" @default.
- W2897841402 countsByYear W28978414022019 @default.
- W2897841402 countsByYear W28978414022020 @default.
- W2897841402 countsByYear W28978414022021 @default.
- W2897841402 countsByYear W28978414022022 @default.
- W2897841402 countsByYear W28978414022023 @default.
- W2897841402 crossrefType "journal-article" @default.
- W2897841402 hasAuthorship W2897841402A5015525872 @default.
- W2897841402 hasAuthorship W2897841402A5046605531 @default.
- W2897841402 hasAuthorship W2897841402A5057732142 @default.
- W2897841402 hasAuthorship W2897841402A5059068585 @default.
- W2897841402 hasAuthorship W2897841402A5069951778 @default.
- W2897841402 hasAuthorship W2897841402A5077882811 @default.
- W2897841402 hasBestOaLocation W28978414022 @default.
- W2897841402 hasConcept C108583219 @default.
- W2897841402 hasConcept C109718341 @default.
- W2897841402 hasConcept C115961682 @default.
- W2897841402 hasConcept C116058348 @default.
- W2897841402 hasConcept C122907437 @default.
- W2897841402 hasConcept C13280743 @default.
- W2897841402 hasConcept C138111711 @default.
- W2897841402 hasConcept C145671259 @default.
- W2897841402 hasConcept C153180895 @default.
- W2897841402 hasConcept C154945302 @default.
- W2897841402 hasConcept C1667742 @default.
- W2897841402 hasConcept C185798385 @default.
- W2897841402 hasConcept C205649164 @default.
- W2897841402 hasConcept C2776135515 @default.
- W2897841402 hasConcept C33923547 @default.
- W2897841402 hasConcept C38652104 @default.
- W2897841402 hasConcept C41008148 @default.
- W2897841402 hasConcept C48372109 @default.
- W2897841402 hasConcept C63435697 @default.
- W2897841402 hasConcept C67388219 @default.
- W2897841402 hasConcept C74270461 @default.
- W2897841402 hasConcept C80444323 @default.
- W2897841402 hasConcept C94375191 @default.
- W2897841402 hasConcept C99138194 @default.
- W2897841402 hasConceptScore W2897841402C108583219 @default.
- W2897841402 hasConceptScore W2897841402C109718341 @default.
- W2897841402 hasConceptScore W2897841402C115961682 @default.
- W2897841402 hasConceptScore W2897841402C116058348 @default.
- W2897841402 hasConceptScore W2897841402C122907437 @default.
- W2897841402 hasConceptScore W2897841402C13280743 @default.
- W2897841402 hasConceptScore W2897841402C138111711 @default.
- W2897841402 hasConceptScore W2897841402C145671259 @default.
- W2897841402 hasConceptScore W2897841402C153180895 @default.
- W2897841402 hasConceptScore W2897841402C154945302 @default.
- W2897841402 hasConceptScore W2897841402C1667742 @default.
- W2897841402 hasConceptScore W2897841402C185798385 @default.
- W2897841402 hasConceptScore W2897841402C205649164 @default.
- W2897841402 hasConceptScore W2897841402C2776135515 @default.
- W2897841402 hasConceptScore W2897841402C33923547 @default.