Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897843872> ?p ?o ?g. }
- W2897843872 endingPage "19" @default.
- W2897843872 startingPage "1" @default.
- W2897843872 abstract "There are two main categories of force control schemes: hybrid position-force control and impedance control. However, the former does not take into account the dynamic interaction between the robot’s end effector and the environment. In contrast, impedance control includes regulation and stabilization of robot motion by creating a mathematical relationship between the interaction forces and the reference trajectories. It involves an energetic pair of a flow and an effort, instead of controlling a single position or a force. A mass-spring-damper impedance filter is generally used for safe interaction purposes. Tuning the parameters of the impedance filter is important and, if an unsuitable strategy is used, this can lead to unstable contact. Humans, however, have exceptionally effective control systems with advanced biological actuators. An individual can manipulate muscle stiffness to comply with the interaction forces. Accordingly, the parameters of the impedance filter should be time varying rather than value constant in order to match human behavior during interaction tasks. Therefore, this paper presents an overview of impedance control strategies including standard and extended control schemes. Standard controllers cover impedance and admittance architectures. Extended control schemes include admittance control with force tracking, variable impedance control, and impedance control of flexible joints. The categories of impedance control and their features and limitations are well introduced. Attention is paid to variable impedance control while considering the possible control schemes, the performance, stability, and the integration of constant compliant elements with the host robot." @default.
- W2897843872 created "2018-10-26" @default.
- W2897843872 creator A5009407948 @default.
- W2897843872 creator A5038915032 @default.
- W2897843872 creator A5060021065 @default.
- W2897843872 creator A5061179511 @default.
- W2897843872 creator A5082200249 @default.
- W2897843872 creator A5090134604 @default.
- W2897843872 date "2018-10-18" @default.
- W2897843872 modified "2023-10-16" @default.
- W2897843872 title "Active Impedance Control of Bioinspired Motion Robotic Manipulators: An Overview" @default.
- W2897843872 cites W1523815250 @default.
- W2897843872 cites W1535570778 @default.
- W2897843872 cites W1548528537 @default.
- W2897843872 cites W1571443838 @default.
- W2897843872 cites W1915160254 @default.
- W2897843872 cites W1967377907 @default.
- W2897843872 cites W1969976050 @default.
- W2897843872 cites W1980180948 @default.
- W2897843872 cites W1980332428 @default.
- W2897843872 cites W1987133880 @default.
- W2897843872 cites W1990866293 @default.
- W2897843872 cites W1995090200 @default.
- W2897843872 cites W1998454733 @default.
- W2897843872 cites W1998490431 @default.
- W2897843872 cites W2002529332 @default.
- W2897843872 cites W2003269587 @default.
- W2897843872 cites W2017239762 @default.
- W2897843872 cites W2017459805 @default.
- W2897843872 cites W2024803487 @default.
- W2897843872 cites W2028153280 @default.
- W2897843872 cites W2031954356 @default.
- W2897843872 cites W2033167899 @default.
- W2897843872 cites W2033433965 @default.
- W2897843872 cites W2034052310 @default.
- W2897843872 cites W2034523784 @default.
- W2897843872 cites W2038386942 @default.
- W2897843872 cites W2046043060 @default.
- W2897843872 cites W2056536535 @default.
- W2897843872 cites W2065676327 @default.
- W2897843872 cites W2066379939 @default.
- W2897843872 cites W2073136132 @default.
- W2897843872 cites W2078623275 @default.
- W2897843872 cites W2080487795 @default.
- W2897843872 cites W2081365885 @default.
- W2897843872 cites W2081468032 @default.
- W2897843872 cites W2096826446 @default.
- W2897843872 cites W2099699682 @default.
- W2897843872 cites W2101630027 @default.
- W2897843872 cites W2110218912 @default.
- W2897843872 cites W2112474089 @default.
- W2897843872 cites W2116005591 @default.
- W2897843872 cites W2116767351 @default.
- W2897843872 cites W2117307482 @default.
- W2897843872 cites W2120356183 @default.
- W2897843872 cites W2123035336 @default.
- W2897843872 cites W2127482115 @default.
- W2897843872 cites W2127572968 @default.
- W2897843872 cites W2131063775 @default.
- W2897843872 cites W2140371337 @default.
- W2897843872 cites W2145087413 @default.
- W2897843872 cites W2150024155 @default.
- W2897843872 cites W2153164038 @default.
- W2897843872 cites W2153207152 @default.
- W2897843872 cites W2160680071 @default.
- W2897843872 cites W2166230296 @default.
- W2897843872 cites W2169100281 @default.
- W2897843872 cites W2247230765 @default.
- W2897843872 cites W2286050535 @default.
- W2897843872 cites W2293200354 @default.
- W2897843872 cites W2295584263 @default.
- W2897843872 cites W2296039882 @default.
- W2897843872 cites W2296350043 @default.
- W2897843872 cites W2296480550 @default.
- W2897843872 cites W2297730688 @default.
- W2897843872 cites W2330589301 @default.
- W2897843872 cites W2341442449 @default.
- W2897843872 cites W2413918388 @default.
- W2897843872 cites W2467303390 @default.
- W2897843872 cites W2504581443 @default.
- W2897843872 cites W2517641405 @default.
- W2897843872 cites W2523980053 @default.
- W2897843872 cites W2566495809 @default.
- W2897843872 cites W2590859527 @default.
- W2897843872 cites W2615167078 @default.
- W2897843872 cites W2689461430 @default.
- W2897843872 cites W2738021937 @default.
- W2897843872 cites W2750711367 @default.
- W2897843872 cites W2783054423 @default.
- W2897843872 cites W2783307626 @default.
- W2897843872 cites W4234618336 @default.
- W2897843872 cites W4234832683 @default.
- W2897843872 cites W4242929450 @default.
- W2897843872 cites W4243216834 @default.
- W2897843872 cites W4248749150 @default.
- W2897843872 cites W4251861244 @default.
- W2897843872 cites W4254005064 @default.
- W2897843872 doi "https://doi.org/10.1155/2018/8203054" @default.