Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897855897> ?p ?o ?g. }
- W2897855897 endingPage "251584141982717" @default.
- W2897855897 startingPage "251584141982717" @default.
- W2897855897 abstract "Deep learning has recently gained high interest in ophthalmology due to its ability to detect clinically significant features for diagnosis and prognosis. Despite these significant advances, little is known about the ability of various deep learning systems to be embedded within ophthalmic imaging devices, allowing automated image acquisition. In this work, we will review the existing and future directions for ‘active acquisition’–embedded deep learning, leading to as high-quality images with little intervention by the human operator. In clinical practice, the improved image quality should translate into more robust deep learning–based clinical diagnostics. Embedded deep learning will be enabled by the constantly improving hardware performance with low cost. We will briefly review possible computation methods in larger clinical systems. Briefly, they can be included in a three-layer framework composed of edge, fog, and cloud layers, the former being performed at a device level. Improved egde-layer performance via ‘active acquisition’ serves as an automatic data curation operator translating to better quality data in electronic health records, as well as on the cloud layer, for improved deep learning–based clinical data mining." @default.
- W2897855897 created "2018-10-26" @default.
- W2897855897 creator A5015017045 @default.
- W2897855897 creator A5029816810 @default.
- W2897855897 creator A5036457457 @default.
- W2897855897 creator A5055334565 @default.
- W2897855897 date "2019-01-01" @default.
- W2897855897 modified "2023-10-16" @default.
- W2897855897 title "Embedded deep learning in ophthalmology: making ophthalmic imaging smarter" @default.
- W2897855897 cites W1484900796 @default.
- W2897855897 cites W1984527295 @default.
- W2897855897 cites W1993396050 @default.
- W2897855897 cites W1996176493 @default.
- W2897855897 cites W2003531547 @default.
- W2897855897 cites W2006918470 @default.
- W2897855897 cites W2047421990 @default.
- W2897855897 cites W2049727490 @default.
- W2897855897 cites W2058579223 @default.
- W2897855897 cites W2066254554 @default.
- W2897855897 cites W2069131127 @default.
- W2897855897 cites W2075584671 @default.
- W2897855897 cites W2094358814 @default.
- W2897855897 cites W2111199290 @default.
- W2897855897 cites W2113205133 @default.
- W2897855897 cites W2133627653 @default.
- W2897855897 cites W2148040994 @default.
- W2897855897 cites W2150903265 @default.
- W2897855897 cites W2157309777 @default.
- W2897855897 cites W2159003652 @default.
- W2897855897 cites W2276530525 @default.
- W2897855897 cites W2279108819 @default.
- W2897855897 cites W2316172824 @default.
- W2897855897 cites W2410153171 @default.
- W2897855897 cites W2416799949 @default.
- W2897855897 cites W2477229728 @default.
- W2897855897 cites W2502537072 @default.
- W2897855897 cites W2509227663 @default.
- W2897855897 cites W2516733522 @default.
- W2897855897 cites W2520575083 @default.
- W2897855897 cites W2523513766 @default.
- W2897855897 cites W2533087400 @default.
- W2897855897 cites W2536773249 @default.
- W2897855897 cites W2556250153 @default.
- W2897855897 cites W2562034065 @default.
- W2897855897 cites W2562637781 @default.
- W2897855897 cites W2572945414 @default.
- W2897855897 cites W2574952845 @default.
- W2897855897 cites W2576972144 @default.
- W2897855897 cites W2582564323 @default.
- W2897855897 cites W2584093155 @default.
- W2897855897 cites W2586703361 @default.
- W2897855897 cites W2587830850 @default.
- W2897855897 cites W2588147029 @default.
- W2897855897 cites W2588225334 @default.
- W2897855897 cites W2588869630 @default.
- W2897855897 cites W2592929672 @default.
- W2897855897 cites W2594014149 @default.
- W2897855897 cites W2604262941 @default.
- W2897855897 cites W2609752305 @default.
- W2897855897 cites W2614949728 @default.
- W2897855897 cites W2619219839 @default.
- W2897855897 cites W2619652022 @default.
- W2897855897 cites W2621101817 @default.
- W2897855897 cites W2625625371 @default.
- W2897855897 cites W2629596783 @default.
- W2897855897 cites W2727603722 @default.
- W2897855897 cites W2729008774 @default.
- W2897855897 cites W2732010771 @default.
- W2897855897 cites W2735974062 @default.
- W2897855897 cites W2737749905 @default.
- W2897855897 cites W2741826584 @default.
- W2897855897 cites W2743761286 @default.
- W2897855897 cites W2748657116 @default.
- W2897855897 cites W2752747624 @default.
- W2897855897 cites W2761912464 @default.
- W2897855897 cites W2768870744 @default.
- W2897855897 cites W2769422756 @default.
- W2897855897 cites W2769851865 @default.
- W2897855897 cites W2770341239 @default.
- W2897855897 cites W2772246530 @default.
- W2897855897 cites W2773142824 @default.
- W2897855897 cites W2775884497 @default.
- W2897855897 cites W2778550933 @default.
- W2897855897 cites W2782079983 @default.
- W2897855897 cites W2783110961 @default.
- W2897855897 cites W2783128520 @default.
- W2897855897 cites W2783924024 @default.
- W2897855897 cites W2784308275 @default.
- W2897855897 cites W2785754692 @default.
- W2897855897 cites W2786070938 @default.
- W2897855897 cites W2788385018 @default.
- W2897855897 cites W2789612455 @default.
- W2897855897 cites W2792689971 @default.
- W2897855897 cites W2793300138 @default.
- W2897855897 cites W2793955027 @default.
- W2897855897 cites W2795342689 @default.
- W2897855897 cites W2795513946 @default.
- W2897855897 cites W2795613961 @default.