Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897858781> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2897858781 abstract "Dictionary learning (DL) has became popular in image classification tasks. Due to the discriminative analysis dictionary learning (DADL) model can supply richer feature representations and discriminability, it gradually received extensive attention. Inspired by this, we propose a band grouping based hyperspectral imagery classification method with analysis dictionary learning framework in this study. First, we segment all spectra into several segments according to the spectral correlation. Second, DADL is utilized to represent the data and obtain the sparse representation coefficients. Finally, we employ the k-nearest neighbor (KNN) algorithm to classify the sparse representation coefficients, and the final classification label is obtained by voting the KNN results. Experimental results on hyperspectral imagery classification validated the effectiveness of the proposed method." @default.
- W2897858781 created "2018-10-26" @default.
- W2897858781 creator A5003799076 @default.
- W2897858781 creator A5028235866 @default.
- W2897858781 creator A5042717633 @default.
- W2897858781 creator A5070638458 @default.
- W2897858781 creator A5076517058 @default.
- W2897858781 date "2018-09-01" @default.
- W2897858781 modified "2023-10-12" @default.
- W2897858781 title "A Band Grouping Based Hyperspectral Imagery Classification Method with Analysis Dictionary Learning" @default.
- W2897858781 cites W1967866839 @default.
- W2897858781 cites W1989070508 @default.
- W2897858781 cites W1998030312 @default.
- W2897858781 cites W2030507150 @default.
- W2897858781 cites W2068529303 @default.
- W2897858781 cites W2135160607 @default.
- W2897858781 cites W2330290358 @default.
- W2897858781 cites W2509021534 @default.
- W2897858781 cites W2539049518 @default.
- W2897858781 cites W2564013914 @default.
- W2897858781 cites W2748967439 @default.
- W2897858781 cites W2790226428 @default.
- W2897858781 cites W2791367865 @default.
- W2897858781 cites W2793515883 @default.
- W2897858781 cites W2889107641 @default.
- W2897858781 cites W3099014258 @default.
- W2897858781 cites W3099751318 @default.
- W2897858781 doi "https://doi.org/10.1109/bigmm.2018.8499444" @default.
- W2897858781 hasPublicationYear "2018" @default.
- W2897858781 type Work @default.
- W2897858781 sameAs 2897858781 @default.
- W2897858781 citedByCount "0" @default.
- W2897858781 crossrefType "proceedings-article" @default.
- W2897858781 hasAuthorship W2897858781A5003799076 @default.
- W2897858781 hasAuthorship W2897858781A5028235866 @default.
- W2897858781 hasAuthorship W2897858781A5042717633 @default.
- W2897858781 hasAuthorship W2897858781A5070638458 @default.
- W2897858781 hasAuthorship W2897858781A5076517058 @default.
- W2897858781 hasConcept C113238511 @default.
- W2897858781 hasConcept C115961682 @default.
- W2897858781 hasConcept C124066611 @default.
- W2897858781 hasConcept C138885662 @default.
- W2897858781 hasConcept C153180895 @default.
- W2897858781 hasConcept C154945302 @default.
- W2897858781 hasConcept C159078339 @default.
- W2897858781 hasConcept C17744445 @default.
- W2897858781 hasConcept C199539241 @default.
- W2897858781 hasConcept C2776359362 @default.
- W2897858781 hasConcept C2776401178 @default.
- W2897858781 hasConcept C41008148 @default.
- W2897858781 hasConcept C41895202 @default.
- W2897858781 hasConcept C75294576 @default.
- W2897858781 hasConcept C94625758 @default.
- W2897858781 hasConcept C97931131 @default.
- W2897858781 hasConceptScore W2897858781C113238511 @default.
- W2897858781 hasConceptScore W2897858781C115961682 @default.
- W2897858781 hasConceptScore W2897858781C124066611 @default.
- W2897858781 hasConceptScore W2897858781C138885662 @default.
- W2897858781 hasConceptScore W2897858781C153180895 @default.
- W2897858781 hasConceptScore W2897858781C154945302 @default.
- W2897858781 hasConceptScore W2897858781C159078339 @default.
- W2897858781 hasConceptScore W2897858781C17744445 @default.
- W2897858781 hasConceptScore W2897858781C199539241 @default.
- W2897858781 hasConceptScore W2897858781C2776359362 @default.
- W2897858781 hasConceptScore W2897858781C2776401178 @default.
- W2897858781 hasConceptScore W2897858781C41008148 @default.
- W2897858781 hasConceptScore W2897858781C41895202 @default.
- W2897858781 hasConceptScore W2897858781C75294576 @default.
- W2897858781 hasConceptScore W2897858781C94625758 @default.
- W2897858781 hasConceptScore W2897858781C97931131 @default.
- W2897858781 hasLocation W28978587811 @default.
- W2897858781 hasOpenAccess W2897858781 @default.
- W2897858781 hasPrimaryLocation W28978587811 @default.
- W2897858781 hasRelatedWork W1972656095 @default.
- W2897858781 hasRelatedWork W2527650001 @default.
- W2897858781 hasRelatedWork W2759832987 @default.
- W2897858781 hasRelatedWork W2970216048 @default.
- W2897858781 hasRelatedWork W2980745533 @default.
- W2897858781 hasRelatedWork W3026401485 @default.
- W2897858781 hasRelatedWork W3043181422 @default.
- W2897858781 hasRelatedWork W3143193446 @default.
- W2897858781 hasRelatedWork W3211183747 @default.
- W2897858781 hasRelatedWork W4293057251 @default.
- W2897858781 isParatext "false" @default.
- W2897858781 isRetracted "false" @default.
- W2897858781 magId "2897858781" @default.
- W2897858781 workType "article" @default.