Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897874865> ?p ?o ?g. }
- W2897874865 endingPage "63186" @default.
- W2897874865 startingPage "63164" @default.
- W2897874865 abstract "Human identification using camera-based surveillance systems is a challenging research topic, especially in cases where the human face is not visible to cameras and/or when humans captured on cameras have no clear visual identity owing to environments with low-illumination. With the development of deep learning algorithms, studies that are based on the human gait using convolutional neural networks (CNNs) and long short-term memory (LSTM) have achieved promising performance for human identification. However, CNN and LSTM-based methods have the limitation of having higher loss of temporal and spatial information, respectively. In our approach, we use shallow CNN stacked with LSTM and deep CNN followed by score fusion to capture more spatial and temporal features. In addition, there have been a few studies regarding gait-based human identification based on the front and back view images of humans captured in low-illumination environments. This makes it difficult to extract conventional features, such as skeleton joints, cycle, cadence, and the lengths of walking strides. To overcome these problems, we designed our method considering the front and back view images captured in both highand lowillumination environments. The experimental results obtained using a self-collected database and the open database of the institute of automation Chinese academy of sciences gait dataset C show that the proposed method outperforms previous methods." @default.
- W2897874865 created "2018-10-26" @default.
- W2897874865 creator A5018168347 @default.
- W2897874865 creator A5060349162 @default.
- W2897874865 creator A5083173630 @default.
- W2897874865 creator A5086481810 @default.
- W2897874865 date "2018-01-01" @default.
- W2897874865 modified "2023-10-16" @default.
- W2897874865 title "Gait-Based Human Identification by Combining Shallow Convolutional Neural Network-Stacked Long Short-Term Memory and Deep Convolutional Neural Network" @default.
- W2897874865 cites W1496923160 @default.
- W2897874865 cites W1689711448 @default.
- W2897874865 cites W1895577753 @default.
- W2897874865 cites W1971955426 @default.
- W2897874865 cites W2022075901 @default.
- W2897874865 cites W2064675550 @default.
- W2897874865 cites W2085601296 @default.
- W2897874865 cites W2112796928 @default.
- W2897874865 cites W2138451337 @default.
- W2897874865 cites W2145287260 @default.
- W2897874865 cites W2183341477 @default.
- W2897874865 cites W2194775991 @default.
- W2897874865 cites W2275614026 @default.
- W2897874865 cites W2295124130 @default.
- W2897874865 cites W2322772590 @default.
- W2897874865 cites W2325939864 @default.
- W2897874865 cites W2473640056 @default.
- W2897874865 cites W2508429489 @default.
- W2897874865 cites W2510190030 @default.
- W2897874865 cites W2517225990 @default.
- W2897874865 cites W2531409750 @default.
- W2897874865 cites W2590203987 @default.
- W2897874865 cites W2592878160 @default.
- W2897874865 cites W2609963459 @default.
- W2897874865 cites W2612587170 @default.
- W2897874865 cites W2745436507 @default.
- W2897874865 cites W2770546254 @default.
- W2897874865 cites W2781880940 @default.
- W2897874865 cites W2793239857 @default.
- W2897874865 cites W2963216120 @default.
- W2897874865 cites W2963446712 @default.
- W2897874865 doi "https://doi.org/10.1109/access.2018.2876890" @default.
- W2897874865 hasPublicationYear "2018" @default.
- W2897874865 type Work @default.
- W2897874865 sameAs 2897874865 @default.
- W2897874865 citedByCount "32" @default.
- W2897874865 countsByYear W28978748652019 @default.
- W2897874865 countsByYear W28978748652020 @default.
- W2897874865 countsByYear W28978748652021 @default.
- W2897874865 countsByYear W28978748652022 @default.
- W2897874865 countsByYear W28978748652023 @default.
- W2897874865 crossrefType "journal-article" @default.
- W2897874865 hasAuthorship W2897874865A5018168347 @default.
- W2897874865 hasAuthorship W2897874865A5060349162 @default.
- W2897874865 hasAuthorship W2897874865A5083173630 @default.
- W2897874865 hasAuthorship W2897874865A5086481810 @default.
- W2897874865 hasBestOaLocation W28978748651 @default.
- W2897874865 hasConcept C108583219 @default.
- W2897874865 hasConcept C116834253 @default.
- W2897874865 hasConcept C127413603 @default.
- W2897874865 hasConcept C151800584 @default.
- W2897874865 hasConcept C153180895 @default.
- W2897874865 hasConcept C154945302 @default.
- W2897874865 hasConcept C24326235 @default.
- W2897874865 hasConcept C2777125575 @default.
- W2897874865 hasConcept C31972630 @default.
- W2897874865 hasConcept C41008148 @default.
- W2897874865 hasConcept C42407357 @default.
- W2897874865 hasConcept C59822182 @default.
- W2897874865 hasConcept C81363708 @default.
- W2897874865 hasConcept C86803240 @default.
- W2897874865 hasConceptScore W2897874865C108583219 @default.
- W2897874865 hasConceptScore W2897874865C116834253 @default.
- W2897874865 hasConceptScore W2897874865C127413603 @default.
- W2897874865 hasConceptScore W2897874865C151800584 @default.
- W2897874865 hasConceptScore W2897874865C153180895 @default.
- W2897874865 hasConceptScore W2897874865C154945302 @default.
- W2897874865 hasConceptScore W2897874865C24326235 @default.
- W2897874865 hasConceptScore W2897874865C2777125575 @default.
- W2897874865 hasConceptScore W2897874865C31972630 @default.
- W2897874865 hasConceptScore W2897874865C41008148 @default.
- W2897874865 hasConceptScore W2897874865C42407357 @default.
- W2897874865 hasConceptScore W2897874865C59822182 @default.
- W2897874865 hasConceptScore W2897874865C81363708 @default.
- W2897874865 hasConceptScore W2897874865C86803240 @default.
- W2897874865 hasFunder F4320322120 @default.
- W2897874865 hasLocation W28978748651 @default.
- W2897874865 hasOpenAccess W2897874865 @default.
- W2897874865 hasPrimaryLocation W28978748651 @default.
- W2897874865 hasRelatedWork W2731899572 @default.
- W2897874865 hasRelatedWork W2999805992 @default.
- W2897874865 hasRelatedWork W3011074480 @default.
- W2897874865 hasRelatedWork W3116150086 @default.
- W2897874865 hasRelatedWork W3133861977 @default.
- W2897874865 hasRelatedWork W3192840557 @default.
- W2897874865 hasRelatedWork W4200173597 @default.
- W2897874865 hasRelatedWork W4291897433 @default.
- W2897874865 hasRelatedWork W4312417841 @default.
- W2897874865 hasRelatedWork W4321369474 @default.