Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897874992> ?p ?o ?g. }
- W2897874992 abstract "Clostridiales and Bacteroidales are uniquely adapted to the gut environment and have co-evolved with their hosts resulting in convergent microbiome patterns within mammalian species. As a result, members of Clostridiales and Bacteroidales are particularly suitable for identifying sources of fecal contamination in environmental samples. However, a comprehensive evaluation of their predictive power and development of computational approaches is lacking. Given the global public health concern for waterborne disease, accurate identification of fecal pollution sources is essential for effective risk assessment and management. Here, we use random forest algorithm and 16S rRNA gene amplicon sequences assigned to Clostridiales and Bacteroidales to identify common fecal pollution sources. We benchmarked the accuracy, consistency, and sensitivity of our classification approach using fecal, environmental, and artificial in silico generated samples. Clostridiales and Bacteroidales classifiers were composed mainly of sequences that displayed differential distributions (host-preferred) among sewage, cow, deer, pig, cat, and dog sources. Each classifier correctly identified human and individual animal sources in approximately 90% of the fecal and environmental samples tested. Misclassifications resulted mostly from false-positive identification of cat and dog fecal signatures in host animals not used to build the classifiers, suggesting characterization of additional animals would improve accuracy. Random forest predictions were highly reproducible, reflecting the consistency of the bacterial signatures within each of the animal and sewage sources. Using in silico generated samples, we could detect fecal bacterial signatures when the source dataset accounted for as little as ~ 0.5% of the assemblage, with ~ 0.04% of the sequences matching the classifiers. Finally, we developed a proxy to estimate proportions among sources, which allowed us to determine which sources contribute the most to observed fecal pollution. Random forest classification with 16S rRNA gene amplicons offers a rapid, sensitive, and accurate solution for identifying host microbial signatures to detect human and animal fecal contamination in environmental samples." @default.
- W2897874992 created "2018-10-26" @default.
- W2897874992 creator A5017334057 @default.
- W2897874992 creator A5037120129 @default.
- W2897874992 creator A5052503664 @default.
- W2897874992 creator A5083768969 @default.
- W2897874992 date "2018-10-18" @default.
- W2897874992 modified "2023-10-10" @default.
- W2897874992 title "Fecal source identification using random forest" @default.
- W2897874992 cites W1628986631 @default.
- W2897874992 cites W1681390718 @default.
- W2897874992 cites W1694538241 @default.
- W2897874992 cites W1951683428 @default.
- W2897874992 cites W1970064299 @default.
- W2897874992 cites W1981675027 @default.
- W2897874992 cites W1981761407 @default.
- W2897874992 cites W1985544238 @default.
- W2897874992 cites W1988925586 @default.
- W2897874992 cites W1998601670 @default.
- W2897874992 cites W2001146692 @default.
- W2897874992 cites W2001615321 @default.
- W2897874992 cites W2005047685 @default.
- W2897874992 cites W2008194879 @default.
- W2897874992 cites W2011534488 @default.
- W2897874992 cites W2013470122 @default.
- W2897874992 cites W2017425843 @default.
- W2897874992 cites W2017833802 @default.
- W2897874992 cites W2021369951 @default.
- W2897874992 cites W2026777696 @default.
- W2897874992 cites W2036897871 @default.
- W2897874992 cites W2038023694 @default.
- W2897874992 cites W2041347794 @default.
- W2897874992 cites W2047294135 @default.
- W2897874992 cites W2051907885 @default.
- W2897874992 cites W2054407804 @default.
- W2897874992 cites W2078400316 @default.
- W2897874992 cites W2079520182 @default.
- W2897874992 cites W2108718991 @default.
- W2897874992 cites W2114368506 @default.
- W2897874992 cites W2118996188 @default.
- W2897874992 cites W2121378751 @default.
- W2897874992 cites W2121409138 @default.
- W2897874992 cites W2122789727 @default.
- W2897874992 cites W2122997910 @default.
- W2897874992 cites W2128711701 @default.
- W2897874992 cites W2133194099 @default.
- W2897874992 cites W2135623916 @default.
- W2897874992 cites W2139086914 @default.
- W2897874992 cites W2142247602 @default.
- W2897874992 cites W2142373913 @default.
- W2897874992 cites W2145104573 @default.
- W2897874992 cites W2145158133 @default.
- W2897874992 cites W2154026962 @default.
- W2897874992 cites W2161919313 @default.
- W2897874992 cites W2166562121 @default.
- W2897874992 cites W2167084464 @default.
- W2897874992 cites W2170240781 @default.
- W2897874992 cites W2170951896 @default.
- W2897874992 cites W2280794913 @default.
- W2897874992 cites W2555130421 @default.
- W2897874992 cites W2593416970 @default.
- W2897874992 cites W2606518937 @default.
- W2897874992 cites W2655607637 @default.
- W2897874992 cites W2778026792 @default.
- W2897874992 cites W2793007309 @default.
- W2897874992 cites W2800970434 @default.
- W2897874992 cites W2803016503 @default.
- W2897874992 cites W2911964244 @default.
- W2897874992 cites W4251708881 @default.
- W2897874992 doi "https://doi.org/10.1186/s40168-018-0568-3" @default.
- W2897874992 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6194674" @default.
- W2897874992 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30336775" @default.
- W2897874992 hasPublicationYear "2018" @default.
- W2897874992 type Work @default.
- W2897874992 sameAs 2897874992 @default.
- W2897874992 citedByCount "85" @default.
- W2897874992 countsByYear W28978749922019 @default.
- W2897874992 countsByYear W28978749922020 @default.
- W2897874992 countsByYear W28978749922021 @default.
- W2897874992 countsByYear W28978749922022 @default.
- W2897874992 countsByYear W28978749922023 @default.
- W2897874992 crossrefType "journal-article" @default.
- W2897874992 hasAuthorship W2897874992A5017334057 @default.
- W2897874992 hasAuthorship W2897874992A5037120129 @default.
- W2897874992 hasAuthorship W2897874992A5052503664 @default.
- W2897874992 hasAuthorship W2897874992A5083768969 @default.
- W2897874992 hasBestOaLocation W28978749921 @default.
- W2897874992 hasConcept C104317684 @default.
- W2897874992 hasConcept C124956284 @default.
- W2897874992 hasConcept C153180895 @default.
- W2897874992 hasConcept C154945302 @default.
- W2897874992 hasConcept C18903297 @default.
- W2897874992 hasConcept C203519979 @default.
- W2897874992 hasConcept C2775905019 @default.
- W2897874992 hasConcept C2776607351 @default.
- W2897874992 hasConcept C2777367657 @default.
- W2897874992 hasConcept C2778312467 @default.
- W2897874992 hasConcept C2780797713 @default.
- W2897874992 hasConcept C2908643440 @default.
- W2897874992 hasConcept C41008148 @default.