Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897876346> ?p ?o ?g. }
- W2897876346 endingPage "345" @default.
- W2897876346 startingPage "333" @default.
- W2897876346 abstract "Clustering is a popular technique that can help make large datasets more manageable and usable by grouping together similar objects. Most clustering approaches are too computationally expensive for datasets that are very large or complex. This work presents Parallel K-Tree, a hierarchical data structure and clustering algorithm that takes advantage of modern computing environments to cluster extremely large datasets. Parallel K-Tree produces high-quality clusters and scales more efficiently than traditional, parallelized and state-of-the-art approaches. Parallel K-Tree was applied to a large (8 terabyte) collection of Landsat 5 satellite images. This required clustering of 540 billion objects into eight billion clusters — a two orders of magnitude size increase over any reported alternative approach. Furthermore, Parallel K-Tree was executed on just two commodity servers — rather than a high-performance supercomputer." @default.
- W2897876346 created "2018-10-26" @default.
- W2897876346 creator A5013498459 @default.
- W2897876346 creator A5015158048 @default.
- W2897876346 creator A5039659890 @default.
- W2897876346 creator A5045420626 @default.
- W2897876346 creator A5083079331 @default.
- W2897876346 date "2019-10-01" @default.
- W2897876346 modified "2023-09-27" @default.
- W2897876346 title "Parallel K-Tree: A multicore, multinode solution to extreme clustering" @default.
- W2897876346 cites W1537525636 @default.
- W2897876346 cites W1597797845 @default.
- W2897876346 cites W1865067283 @default.
- W2897876346 cites W1966979133 @default.
- W2897876346 cites W1987801991 @default.
- W2897876346 cites W1990653740 @default.
- W2897876346 cites W1995450389 @default.
- W2897876346 cites W2011430131 @default.
- W2897876346 cites W2030780826 @default.
- W2897876346 cites W2030864384 @default.
- W2897876346 cites W2032475142 @default.
- W2897876346 cites W2036477303 @default.
- W2897876346 cites W2037313016 @default.
- W2897876346 cites W2046079134 @default.
- W2897876346 cites W2057670944 @default.
- W2897876346 cites W2057712948 @default.
- W2897876346 cites W2061051181 @default.
- W2897876346 cites W2064883676 @default.
- W2897876346 cites W2076777984 @default.
- W2897876346 cites W2092799168 @default.
- W2897876346 cites W2107117509 @default.
- W2897876346 cites W2108399535 @default.
- W2897876346 cites W2109275473 @default.
- W2897876346 cites W2126626732 @default.
- W2897876346 cites W2137707174 @default.
- W2897876346 cites W2141585940 @default.
- W2897876346 cites W2144552105 @default.
- W2897876346 cites W2160642098 @default.
- W2897876346 cites W2165932491 @default.
- W2897876346 cites W2167853719 @default.
- W2897876346 cites W2180682969 @default.
- W2897876346 cites W2294991709 @default.
- W2897876346 cites W2362855512 @default.
- W2897876346 cites W2548390752 @default.
- W2897876346 cites W2566407994 @default.
- W2897876346 cites W2567294309 @default.
- W2897876346 cites W2585602915 @default.
- W2897876346 cites W2605433586 @default.
- W2897876346 cites W2771635595 @default.
- W2897876346 cites W3101342260 @default.
- W2897876346 cites W4231029117 @default.
- W2897876346 cites W4234536190 @default.
- W2897876346 cites W4245665133 @default.
- W2897876346 cites W4301776409 @default.
- W2897876346 doi "https://doi.org/10.1016/j.future.2018.09.038" @default.
- W2897876346 hasPublicationYear "2019" @default.
- W2897876346 type Work @default.
- W2897876346 sameAs 2897876346 @default.
- W2897876346 citedByCount "12" @default.
- W2897876346 countsByYear W28978763462019 @default.
- W2897876346 countsByYear W28978763462020 @default.
- W2897876346 countsByYear W28978763462021 @default.
- W2897876346 countsByYear W28978763462022 @default.
- W2897876346 crossrefType "journal-article" @default.
- W2897876346 hasAuthorship W2897876346A5013498459 @default.
- W2897876346 hasAuthorship W2897876346A5015158048 @default.
- W2897876346 hasAuthorship W2897876346A5039659890 @default.
- W2897876346 hasAuthorship W2897876346A5045420626 @default.
- W2897876346 hasAuthorship W2897876346A5083079331 @default.
- W2897876346 hasBestOaLocation W28978763462 @default.
- W2897876346 hasConcept C111919701 @default.
- W2897876346 hasConcept C113174947 @default.
- W2897876346 hasConcept C124101348 @default.
- W2897876346 hasConcept C134306372 @default.
- W2897876346 hasConcept C136764020 @default.
- W2897876346 hasConcept C154945302 @default.
- W2897876346 hasConcept C173608175 @default.
- W2897876346 hasConcept C199683683 @default.
- W2897876346 hasConcept C2780615836 @default.
- W2897876346 hasConcept C33923547 @default.
- W2897876346 hasConcept C41008148 @default.
- W2897876346 hasConcept C73555534 @default.
- W2897876346 hasConcept C78766204 @default.
- W2897876346 hasConcept C83283714 @default.
- W2897876346 hasConcept C92835128 @default.
- W2897876346 hasConceptScore W2897876346C111919701 @default.
- W2897876346 hasConceptScore W2897876346C113174947 @default.
- W2897876346 hasConceptScore W2897876346C124101348 @default.
- W2897876346 hasConceptScore W2897876346C134306372 @default.
- W2897876346 hasConceptScore W2897876346C136764020 @default.
- W2897876346 hasConceptScore W2897876346C154945302 @default.
- W2897876346 hasConceptScore W2897876346C173608175 @default.
- W2897876346 hasConceptScore W2897876346C199683683 @default.
- W2897876346 hasConceptScore W2897876346C2780615836 @default.
- W2897876346 hasConceptScore W2897876346C33923547 @default.
- W2897876346 hasConceptScore W2897876346C41008148 @default.
- W2897876346 hasConceptScore W2897876346C73555534 @default.
- W2897876346 hasConceptScore W2897876346C78766204 @default.