Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897877056> ?p ?o ?g. }
- W2897877056 endingPage "127" @default.
- W2897877056 startingPage "127" @default.
- W2897877056 abstract "New approaches to collect in-situ data are needed to complement the high spatial (10 m) and temporal (5 d) resolution of Copernicus Sentinel satellite observations. Making sense of Sentinel observations requires high quality and timely in-situ data for training and validation. Classical ground truth collection is expensive, lacks scale, fails to exploit opportunities for automation, and is prone to sampling error. Here we evaluate the potential contribution of opportunistically exploiting crowdsourced street-level imagery to collect massive high-quality in-situ data in the context of crop monitoring. This study assesses this potential by answering two questions: (1) what is the spatial availability of these images across the European Union (EU), and (2) can these images be transformed to useful data? To answer the first question, we evaluated the EU availability of street-level images on Mapillary—the largest open-access platform for such images—against the Land Use and land Cover Area frame Survey (LUCAS) 2018, a systematic surveyed sampling of 337,031 points. For 37.78% of the LUCAS points a crowdsourced image is available within a 2 km buffer, with a mean distance of 816.11 m. We estimate that 9.44% of the EU territory has a crowdsourced image within 300 m from a LUCAS point, illustrating the huge potential of crowdsourcing as a complementary sampling tool. After artificial and built up (63.14%), and inland water (43.67%) land cover classes, arable land has the highest availability at 40.78%. To answer the second question, we focus on identifying crops at parcel level using all 13.6 million Mapillary images collected in the Netherlands. Only 1.9% of the contributors generated 75.15% of the images. A procedure was developed to select and harvest the pictures potentially best suited to identify crops using the geometries of 785,710 Dutch parcels and the pictures’ meta-data such as camera orientation and focal length. Availability of crowdsourced imagery looking at parcels was assessed for eight different crop groups with the 2017 parcel level declarations. Parcel revisits during the growing season allowed to track crop growth. Examples illustrate the capacity to recognize crops and their phenological development on crowdsourced street-level imagery. Consecutive images taken during the same capture track allow selecting the image with the best unobstructed view. In the future, dedicated crop capture tasks can improve image quality and expand coverage in rural areas." @default.
- W2897877056 created "2018-10-26" @default.
- W2897877056 creator A5009521929 @default.
- W2897877056 creator A5018988621 @default.
- W2897877056 creator A5032152437 @default.
- W2897877056 creator A5051020963 @default.
- W2897877056 creator A5081773519 @default.
- W2897877056 creator A5088924899 @default.
- W2897877056 date "2018-10-22" @default.
- W2897877056 modified "2023-10-12" @default.
- W2897877056 title "Crowdsourced Street-Level Imagery as a Potential Source of In-Situ Data for Crop Monitoring" @default.
- W2897877056 cites W1566547423 @default.
- W2897877056 cites W2033452057 @default.
- W2897877056 cites W2036992772 @default.
- W2897877056 cites W2072465375 @default.
- W2897877056 cites W2100704846 @default.
- W2897877056 cites W2158048195 @default.
- W2897877056 cites W2479254933 @default.
- W2897877056 cites W2485451845 @default.
- W2897877056 cites W2508165256 @default.
- W2897877056 cites W2556336411 @default.
- W2897877056 cites W2588898775 @default.
- W2897877056 cites W2592712793 @default.
- W2897877056 cites W2612553712 @default.
- W2897877056 cites W2617647211 @default.
- W2897877056 cites W2752031564 @default.
- W2897877056 cites W2762186317 @default.
- W2897877056 cites W2767410253 @default.
- W2897877056 cites W2786125546 @default.
- W2897877056 cites W2794396966 @default.
- W2897877056 cites W2887088324 @default.
- W2897877056 cites W3101779529 @default.
- W2897877056 cites W631895740 @default.
- W2897877056 cites W645597650 @default.
- W2897877056 doi "https://doi.org/10.3390/land7040127" @default.
- W2897877056 hasPublicationYear "2018" @default.
- W2897877056 type Work @default.
- W2897877056 sameAs 2897877056 @default.
- W2897877056 citedByCount "14" @default.
- W2897877056 countsByYear W28978770562019 @default.
- W2897877056 countsByYear W28978770562020 @default.
- W2897877056 countsByYear W28978770562021 @default.
- W2897877056 countsByYear W28978770562022 @default.
- W2897877056 countsByYear W28978770562023 @default.
- W2897877056 crossrefType "journal-article" @default.
- W2897877056 hasAuthorship W2897877056A5009521929 @default.
- W2897877056 hasAuthorship W2897877056A5018988621 @default.
- W2897877056 hasAuthorship W2897877056A5032152437 @default.
- W2897877056 hasAuthorship W2897877056A5051020963 @default.
- W2897877056 hasAuthorship W2897877056A5081773519 @default.
- W2897877056 hasAuthorship W2897877056A5088924899 @default.
- W2897877056 hasBestOaLocation W28978770561 @default.
- W2897877056 hasConcept C105639569 @default.
- W2897877056 hasConcept C106131492 @default.
- W2897877056 hasConcept C107826830 @default.
- W2897877056 hasConcept C118518473 @default.
- W2897877056 hasConcept C136264566 @default.
- W2897877056 hasConcept C136764020 @default.
- W2897877056 hasConcept C140779682 @default.
- W2897877056 hasConcept C144133560 @default.
- W2897877056 hasConcept C146849305 @default.
- W2897877056 hasConcept C154945302 @default.
- W2897877056 hasConcept C162324750 @default.
- W2897877056 hasConcept C166957645 @default.
- W2897877056 hasConcept C18903297 @default.
- W2897877056 hasConcept C197352329 @default.
- W2897877056 hasConcept C205649164 @default.
- W2897877056 hasConcept C24756922 @default.
- W2897877056 hasConcept C2777610350 @default.
- W2897877056 hasConcept C2778102629 @default.
- W2897877056 hasConcept C2778755073 @default.
- W2897877056 hasConcept C2779343474 @default.
- W2897877056 hasConcept C2780378061 @default.
- W2897877056 hasConcept C2780648208 @default.
- W2897877056 hasConcept C2780797713 @default.
- W2897877056 hasConcept C2910001868 @default.
- W2897877056 hasConcept C31972630 @default.
- W2897877056 hasConcept C39432304 @default.
- W2897877056 hasConcept C41008148 @default.
- W2897877056 hasConcept C4792198 @default.
- W2897877056 hasConcept C58640448 @default.
- W2897877056 hasConcept C59822182 @default.
- W2897877056 hasConcept C62230096 @default.
- W2897877056 hasConcept C62649853 @default.
- W2897877056 hasConcept C71762439 @default.
- W2897877056 hasConcept C86803240 @default.
- W2897877056 hasConceptScore W2897877056C105639569 @default.
- W2897877056 hasConceptScore W2897877056C106131492 @default.
- W2897877056 hasConceptScore W2897877056C107826830 @default.
- W2897877056 hasConceptScore W2897877056C118518473 @default.
- W2897877056 hasConceptScore W2897877056C136264566 @default.
- W2897877056 hasConceptScore W2897877056C136764020 @default.
- W2897877056 hasConceptScore W2897877056C140779682 @default.
- W2897877056 hasConceptScore W2897877056C144133560 @default.
- W2897877056 hasConceptScore W2897877056C146849305 @default.
- W2897877056 hasConceptScore W2897877056C154945302 @default.
- W2897877056 hasConceptScore W2897877056C162324750 @default.
- W2897877056 hasConceptScore W2897877056C166957645 @default.