Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897897407> ?p ?o ?g. }
- W2897897407 endingPage "3052" @default.
- W2897897407 startingPage "3043" @default.
- W2897897407 abstract "Hourly PM2.5 concentrations have multiple change patterns. For hourly PM2.5 concentration prediction, it is beneficial to split the whole dataset into several subsets with similar properties and to train a local prediction model for each subset. However, the methods based on local models need to solve the global-local duality. In this study, a novel prediction model based on classification and regression tree (CART) and ensemble extreme learning machine (EELM) methods is developed to split the dataset into subsets in a hierarchical fashion and build a prediction model for each leaf. Firstly, CART is used to split the dataset by constructing a shallow hierarchical regression tree. Then at each node of the tree, EELM models are built using the training samples of the node, and hidden neuron numbers are selected to minimize validation errors respectively on the leaves of a sub-tree that takes the node as the root. Finally, for each leaf of the tree, a global and several local EELMs on the path from the root to the leaf are compared, and the one with the smallest validation error on the leaf is chosen. The meteorological data of Yancheng urban area and the air pollutant concentration data from City Monitoring Centre are used to evaluate the method developed. The experimental results demonstrate that the method developed addresses the global-local duality, having better performance than global models including random forest (RF), v-support vector regression (v-SVR) and EELM, and other local models based on season and k-means clustering. The new model has improved the capability of treating multiple change patterns." @default.
- W2897897407 created "2018-10-26" @default.
- W2897897407 creator A5003075115 @default.
- W2897897407 creator A5025792405 @default.
- W2897897407 creator A5052044746 @default.
- W2897897407 creator A5086566847 @default.
- W2897897407 date "2019-02-01" @default.
- W2897897407 modified "2023-10-18" @default.
- W2897897407 title "A novel model for hourly PM2.5 concentration prediction based on CART and EELM" @default.
- W2897897407 cites W1965866304 @default.
- W2897897407 cites W1967333634 @default.
- W2897897407 cites W1968015368 @default.
- W2897897407 cites W1968840994 @default.
- W2897897407 cites W1979686445 @default.
- W2897897407 cites W1980079152 @default.
- W2897897407 cites W1992978542 @default.
- W2897897407 cites W1995625719 @default.
- W2897897407 cites W2018192341 @default.
- W2897897407 cites W2026727583 @default.
- W2897897407 cites W2028163949 @default.
- W2897897407 cites W2033879042 @default.
- W2897897407 cites W2053323500 @default.
- W2897897407 cites W2056494717 @default.
- W2897897407 cites W2061232022 @default.
- W2897897407 cites W2069981906 @default.
- W2897897407 cites W2076485554 @default.
- W2897897407 cites W2083553469 @default.
- W2897897407 cites W2087161104 @default.
- W2897897407 cites W2100128988 @default.
- W2897897407 cites W2102567523 @default.
- W2897897407 cites W2111072639 @default.
- W2897897407 cites W2130189616 @default.
- W2897897407 cites W2134265359 @default.
- W2897897407 cites W2140369911 @default.
- W2897897407 cites W2146848957 @default.
- W2897897407 cites W2159326981 @default.
- W2897897407 cites W2161920802 @default.
- W2897897407 cites W2170413589 @default.
- W2897897407 cites W2239373335 @default.
- W2897897407 cites W2282992258 @default.
- W2897897407 cites W2331700789 @default.
- W2897897407 cites W2332907527 @default.
- W2897897407 cites W2543678400 @default.
- W2897897407 cites W2553839055 @default.
- W2897897407 cites W2566512888 @default.
- W2897897407 cites W2581321420 @default.
- W2897897407 cites W2584762222 @default.
- W2897897407 cites W2749667584 @default.
- W2897897407 cites W2754663885 @default.
- W2897897407 cites W2911964244 @default.
- W2897897407 doi "https://doi.org/10.1016/j.scitotenv.2018.10.193" @default.
- W2897897407 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30463154" @default.
- W2897897407 hasPublicationYear "2019" @default.
- W2897897407 type Work @default.
- W2897897407 sameAs 2897897407 @default.
- W2897897407 citedByCount "74" @default.
- W2897897407 countsByYear W28978974072019 @default.
- W2897897407 countsByYear W28978974072020 @default.
- W2897897407 countsByYear W28978974072021 @default.
- W2897897407 countsByYear W28978974072022 @default.
- W2897897407 countsByYear W28978974072023 @default.
- W2897897407 crossrefType "journal-article" @default.
- W2897897407 hasAuthorship W2897897407A5003075115 @default.
- W2897897407 hasAuthorship W2897897407A5025792405 @default.
- W2897897407 hasAuthorship W2897897407A5052044746 @default.
- W2897897407 hasAuthorship W2897897407A5086566847 @default.
- W2897897407 hasBestOaLocation W28978974072 @default.
- W2897897407 hasConcept C105795698 @default.
- W2897897407 hasConcept C113174947 @default.
- W2897897407 hasConcept C119857082 @default.
- W2897897407 hasConcept C119898033 @default.
- W2897897407 hasConcept C12267149 @default.
- W2897897407 hasConcept C124101348 @default.
- W2897897407 hasConcept C127413603 @default.
- W2897897407 hasConcept C134306372 @default.
- W2897897407 hasConcept C152877465 @default.
- W2897897407 hasConcept C154945302 @default.
- W2897897407 hasConcept C166957645 @default.
- W2897897407 hasConcept C169258074 @default.
- W2897897407 hasConcept C205649164 @default.
- W2897897407 hasConcept C2777275308 @default.
- W2897897407 hasConcept C33923547 @default.
- W2897897407 hasConcept C41008148 @default.
- W2897897407 hasConcept C62611344 @default.
- W2897897407 hasConcept C66938386 @default.
- W2897897407 hasConcept C73555534 @default.
- W2897897407 hasConcept C83546350 @default.
- W2897897407 hasConceptScore W2897897407C105795698 @default.
- W2897897407 hasConceptScore W2897897407C113174947 @default.
- W2897897407 hasConceptScore W2897897407C119857082 @default.
- W2897897407 hasConceptScore W2897897407C119898033 @default.
- W2897897407 hasConceptScore W2897897407C12267149 @default.
- W2897897407 hasConceptScore W2897897407C124101348 @default.
- W2897897407 hasConceptScore W2897897407C127413603 @default.
- W2897897407 hasConceptScore W2897897407C134306372 @default.
- W2897897407 hasConceptScore W2897897407C152877465 @default.
- W2897897407 hasConceptScore W2897897407C154945302 @default.
- W2897897407 hasConceptScore W2897897407C166957645 @default.