Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897900918> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2897900918 endingPage "950" @default.
- W2897900918 startingPage "939" @default.
- W2897900918 abstract "Recently, the rapid advancement of high computing platforms has accelerated the development and applications of artificial intelligence techniques. Deep learning, which has been regarded as the next paradigm to revolutionize users' experiences, has attracted networking researchers' interests to relieve the burden due to the exponentially growing traffic and increasing complexities. Various intelligent packet transmission strategies have been proposed to tackle different network problems. However, most of the existing research just focuses on the network related improvements and neglects the analysis about the computation consumptions. In this paper, we propose a Value Iteration Architecture based Deep Learning (VIADL) method to conduct routing design to address the limitations of existing deep learning based routing algorithms in dynamic networks. Besides the network performance analysis, we also study the complexity of our proposal as well as the resource consumptions in different deployment manners. Moreover, we adopt the Heterogeneous Computing Platform (HCP) to conduct the training and running of the proposed VIADL since the theoretical analysis demonstrates the significant reduction of the time complexity with the multiple GPUs in HCPs. Furthermore, simulation results demonstrate that compared with the existing deep learning based method, our proposal can guarantee more stable network performance when network topology changes." @default.
- W2897900918 created "2018-10-26" @default.
- W2897900918 creator A5007662359 @default.
- W2897900918 creator A5013311265 @default.
- W2897900918 creator A5015739734 @default.
- W2897900918 creator A5063911030 @default.
- W2897900918 date "2019-06-01" @default.
- W2897900918 modified "2023-10-11" @default.
- W2897900918 title "Value Iteration Architecture Based Deep Learning for Intelligent Routing Exploiting Heterogeneous Computing Platforms" @default.
- W2897900918 cites W1957670564 @default.
- W2897900918 cites W2032100464 @default.
- W2897900918 cites W2078474261 @default.
- W2897900918 cites W2149294210 @default.
- W2897900918 cites W2523248371 @default.
- W2897900918 cites W2536587200 @default.
- W2897900918 cites W2566425973 @default.
- W2897900918 cites W2567615407 @default.
- W2897900918 cites W2586835517 @default.
- W2897900918 cites W2612472936 @default.
- W2897900918 cites W2617931713 @default.
- W2897900918 cites W2620303912 @default.
- W2897900918 cites W2741401130 @default.
- W2897900918 cites W2766447205 @default.
- W2897900918 cites W2783146946 @default.
- W2897900918 cites W2786070938 @default.
- W2897900918 cites W2789896367 @default.
- W2897900918 cites W2793491406 @default.
- W2897900918 cites W2794311034 @default.
- W2897900918 cites W2891768968 @default.
- W2897900918 cites W2919115771 @default.
- W2897900918 cites W2963549123 @default.
- W2897900918 cites W4214717370 @default.
- W2897900918 cites W47056028 @default.
- W2897900918 doi "https://doi.org/10.1109/tc.2018.2874483" @default.
- W2897900918 hasPublicationYear "2019" @default.
- W2897900918 type Work @default.
- W2897900918 sameAs 2897900918 @default.
- W2897900918 citedByCount "26" @default.
- W2897900918 countsByYear W28979009182019 @default.
- W2897900918 countsByYear W28979009182020 @default.
- W2897900918 countsByYear W28979009182021 @default.
- W2897900918 countsByYear W28979009182022 @default.
- W2897900918 crossrefType "journal-article" @default.
- W2897900918 hasAuthorship W2897900918A5007662359 @default.
- W2897900918 hasAuthorship W2897900918A5013311265 @default.
- W2897900918 hasAuthorship W2897900918A5015739734 @default.
- W2897900918 hasAuthorship W2897900918A5063911030 @default.
- W2897900918 hasConcept C105339364 @default.
- W2897900918 hasConcept C108583219 @default.
- W2897900918 hasConcept C115903868 @default.
- W2897900918 hasConcept C119857082 @default.
- W2897900918 hasConcept C120314980 @default.
- W2897900918 hasConcept C154945302 @default.
- W2897900918 hasConcept C206345919 @default.
- W2897900918 hasConcept C31258907 @default.
- W2897900918 hasConcept C41008148 @default.
- W2897900918 hasConcept C74172769 @default.
- W2897900918 hasConceptScore W2897900918C105339364 @default.
- W2897900918 hasConceptScore W2897900918C108583219 @default.
- W2897900918 hasConceptScore W2897900918C115903868 @default.
- W2897900918 hasConceptScore W2897900918C119857082 @default.
- W2897900918 hasConceptScore W2897900918C120314980 @default.
- W2897900918 hasConceptScore W2897900918C154945302 @default.
- W2897900918 hasConceptScore W2897900918C206345919 @default.
- W2897900918 hasConceptScore W2897900918C31258907 @default.
- W2897900918 hasConceptScore W2897900918C41008148 @default.
- W2897900918 hasConceptScore W2897900918C74172769 @default.
- W2897900918 hasIssue "6" @default.
- W2897900918 hasLocation W28979009181 @default.
- W2897900918 hasOpenAccess W2897900918 @default.
- W2897900918 hasPrimaryLocation W28979009181 @default.
- W2897900918 hasRelatedWork W1607147593 @default.
- W2897900918 hasRelatedWork W2369811061 @default.
- W2897900918 hasRelatedWork W2566006169 @default.
- W2897900918 hasRelatedWork W2770234245 @default.
- W2897900918 hasRelatedWork W2987774938 @default.
- W2897900918 hasRelatedWork W3089997100 @default.
- W2897900918 hasRelatedWork W4229499248 @default.
- W2897900918 hasRelatedWork W4378874356 @default.
- W2897900918 hasRelatedWork W620798607 @default.
- W2897900918 hasRelatedWork W632915154 @default.
- W2897900918 hasVolume "68" @default.
- W2897900918 isParatext "false" @default.
- W2897900918 isRetracted "false" @default.
- W2897900918 magId "2897900918" @default.
- W2897900918 workType "article" @default.