Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897908041> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2897908041 abstract "A general phase-space kinetic model for non-equilibrium charged particle transport through combined localised and delocalised states is presented that accounts for scattering, trapping/detrapping and recombination loss processes in organic and soft-condensed matter. The model takes the form of a generalised Boltzmann equation, for which an analytical solution is found in Fourier-Laplace space. A Chapman-Enskog-type perturbative solution technique is also applied, confirming the analytical results and highlighting the emergence of a density gradient series representation in the weak-gradient hydrodynamic regime. This representation validates Fick's law for this model, providing expressions for the flux transport coefficients of drift velocity and diffusion. By applying Fick's law, a generalised diffusion equation with a unique global time operator is shown to arise that coincides with both the standard diffusion equation and the Caputo fractional diffusion equation in the respective limits of normal and dispersive transport. A subordination transformation is used to efficiently solve the generalised diffusion equation by mapping from the solution of a corresponding classical diffusion equation.From the aforementioned density gradient expansion, we extend Fick's law to consider also the third-order transport coefficient of skewness. This extension is in turn applied to yield a corresponding generalised advection-diffusion-skewness equation. Negative skewness is observed and a physical interpretation is provided in terms of the processes of trapping and detrapping. By analogy with the generalised Einstein relation, a relationship between skewness, diffusion, mobility and temperature is also formed.The phase-space model is generalised further by introducing energy-dependence in the collision, trapping and loss frequencies. The solution of this resulting model is explored indirectly through balance equations for particle continuity, momentum and energy. Generalised Einstein relations (GER) are developed that enable the anisotropic nature of diffusion to be determined in terms of the measured field-dependence of the mobility. Interesting phenomena such as negative differential conductivity (NDC) and recombination heating/cooling are shown to arise from recombination loss processes and the localised and delocalised nature of transport. Fractional generalisations of the GER and mobility are also explored.Finally, a planar organic semiconductor device simulation is presented that makes use of the aforementioned generalised advection-diffusion equation to account for the trapping and detrapping of charge carriers. In this simulation, we use Poisson's equation to account for space-charge effects and Kirchhoff's circuit laws to account for RC effects. These considerations allow for a variety of charge transport experiments to be simulated in a planar geometry, including time of flight (TOF), charge extraction by linearly increasing voltage (CELIV) and resistance-dependent photovoltage (RPV) experiments. The simulation is used to explore a proposed experimental technique for the characterisation of the recombination coefficient, as well as to study what effects traps would have on the measured current." @default.
- W2897908041 created "2018-10-26" @default.
- W2897908041 creator A5048849837 @default.
- W2897908041 date "2018-01-01" @default.
- W2897908041 modified "2023-09-25" @default.
- W2897908041 title "Anomalous charged-particle transport in organic and soft-condensed matter" @default.
- W2897908041 doi "https://doi.org/10.25903/5b5fbb65eec60" @default.
- W2897908041 hasPublicationYear "2018" @default.
- W2897908041 type Work @default.
- W2897908041 sameAs 2897908041 @default.
- W2897908041 citedByCount "1" @default.
- W2897908041 countsByYear W28979080412021 @default.
- W2897908041 crossrefType "dissertation" @default.
- W2897908041 hasAuthorship W2897908041A5048849837 @default.
- W2897908041 hasConcept C105795698 @default.
- W2897908041 hasConcept C121332964 @default.
- W2897908041 hasConcept C121864883 @default.
- W2897908041 hasConcept C122342681 @default.
- W2897908041 hasConcept C136264566 @default.
- W2897908041 hasConcept C162324750 @default.
- W2897908041 hasConcept C164602753 @default.
- W2897908041 hasConcept C165995430 @default.
- W2897908041 hasConcept C17456955 @default.
- W2897908041 hasConcept C2780378061 @default.
- W2897908041 hasConcept C3017618536 @default.
- W2897908041 hasConcept C33923547 @default.
- W2897908041 hasConcept C41008148 @default.
- W2897908041 hasConcept C53403541 @default.
- W2897908041 hasConcept C56739046 @default.
- W2897908041 hasConcept C571446 @default.
- W2897908041 hasConcept C69357855 @default.
- W2897908041 hasConcept C97355855 @default.
- W2897908041 hasConceptScore W2897908041C105795698 @default.
- W2897908041 hasConceptScore W2897908041C121332964 @default.
- W2897908041 hasConceptScore W2897908041C121864883 @default.
- W2897908041 hasConceptScore W2897908041C122342681 @default.
- W2897908041 hasConceptScore W2897908041C136264566 @default.
- W2897908041 hasConceptScore W2897908041C162324750 @default.
- W2897908041 hasConceptScore W2897908041C164602753 @default.
- W2897908041 hasConceptScore W2897908041C165995430 @default.
- W2897908041 hasConceptScore W2897908041C17456955 @default.
- W2897908041 hasConceptScore W2897908041C2780378061 @default.
- W2897908041 hasConceptScore W2897908041C3017618536 @default.
- W2897908041 hasConceptScore W2897908041C33923547 @default.
- W2897908041 hasConceptScore W2897908041C41008148 @default.
- W2897908041 hasConceptScore W2897908041C53403541 @default.
- W2897908041 hasConceptScore W2897908041C56739046 @default.
- W2897908041 hasConceptScore W2897908041C571446 @default.
- W2897908041 hasConceptScore W2897908041C69357855 @default.
- W2897908041 hasConceptScore W2897908041C97355855 @default.
- W2897908041 hasLocation W28979080411 @default.
- W2897908041 hasOpenAccess W2897908041 @default.
- W2897908041 hasPrimaryLocation W28979080411 @default.
- W2897908041 hasRelatedWork W1968435951 @default.
- W2897908041 hasRelatedWork W1971592413 @default.
- W2897908041 hasRelatedWork W1973049266 @default.
- W2897908041 hasRelatedWork W1977851928 @default.
- W2897908041 hasRelatedWork W1999011376 @default.
- W2897908041 hasRelatedWork W2006431023 @default.
- W2897908041 hasRelatedWork W2026317849 @default.
- W2897908041 hasRelatedWork W2040531811 @default.
- W2897908041 hasRelatedWork W2041770716 @default.
- W2897908041 hasRelatedWork W2050119786 @default.
- W2897908041 hasRelatedWork W2053144080 @default.
- W2897908041 hasRelatedWork W2055171530 @default.
- W2897908041 hasRelatedWork W2060022803 @default.
- W2897908041 hasRelatedWork W2314171684 @default.
- W2897908041 hasRelatedWork W2320493753 @default.
- W2897908041 hasRelatedWork W2603670190 @default.
- W2897908041 hasRelatedWork W2619185022 @default.
- W2897908041 hasRelatedWork W2963005799 @default.
- W2897908041 hasRelatedWork W3014627765 @default.
- W2897908041 hasRelatedWork W2181727112 @default.
- W2897908041 isParatext "false" @default.
- W2897908041 isRetracted "false" @default.
- W2897908041 magId "2897908041" @default.
- W2897908041 workType "dissertation" @default.