Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897918988> ?p ?o ?g. }
- W2897918988 abstract "A significant part of MCMC methods can be considered as the Metropolis-Hastings (MH) algorithm with different proposal distributions. From this point of view, the problem of constructing a sampler can be reduced to the question - how to choose a proposal for the MH algorithm? To address this question, we propose to learn an independent sampler that maximizes the acceptance rate of the MH algorithm, which, as we demonstrate, is highly related to the conventional variational inference. For Bayesian inference, the proposed method compares favorably against alternatives to sample from the posterior distribution. Under the same approach, we step beyond the scope of classical MCMC methods and deduce the Generative Adversarial Networks (GANs) framework from scratch, treating the generator as the proposal and the discriminator as the acceptance test. On real-world datasets, we improve Frechet Inception Distance and Inception Score, using different GANs as a proposal distribution for the MH algorithm. In particular, we demonstrate improvements of recently proposed BigGAN model on ImageNet." @default.
- W2897918988 created "2018-10-26" @default.
- W2897918988 creator A5028940329 @default.
- W2897918988 creator A5051657374 @default.
- W2897918988 creator A5076660590 @default.
- W2897918988 date "2018-09-27" @default.
- W2897918988 modified "2023-09-27" @default.
- W2897918988 title "Metropolis-Hastings view on variational inference and adversarial training." @default.
- W2897918988 cites W1583912456 @default.
- W2897918988 cites W1959608418 @default.
- W2897918988 cites W2008703230 @default.
- W2897918988 cites W2010955560 @default.
- W2897918988 cites W2030911724 @default.
- W2897918988 cites W2059448777 @default.
- W2897918988 cites W2073412813 @default.
- W2897918988 cites W2099471712 @default.
- W2897918988 cites W2115067168 @default.
- W2897918988 cites W2117285383 @default.
- W2897918988 cites W2138309709 @default.
- W2897918988 cites W2150807068 @default.
- W2897918988 cites W2168340174 @default.
- W2897918988 cites W2173520492 @default.
- W2897918988 cites W2409550820 @default.
- W2897918988 cites W2412320034 @default.
- W2897918988 cites W2543348979 @default.
- W2897918988 cites W2577946330 @default.
- W2897918988 cites W2769603572 @default.
- W2897918988 cites W2773666931 @default.
- W2897918988 cites W2782980316 @default.
- W2897918988 cites W2893749619 @default.
- W2897918988 cites W2899771611 @default.
- W2897918988 cites W2914470628 @default.
- W2897918988 cites W2950247758 @default.
- W2897918988 cites W2962879692 @default.
- W2897918988 cites W2962897886 @default.
- W2897918988 cites W2963373786 @default.
- W2897918988 cites W2963565380 @default.
- W2897918988 cites W2963977107 @default.
- W2897918988 cites W2963981733 @default.
- W2897918988 cites W299440670 @default.
- W2897918988 cites W3103594830 @default.
- W2897918988 cites W3140968660 @default.
- W2897918988 hasPublicationYear "2018" @default.
- W2897918988 type Work @default.
- W2897918988 sameAs 2897918988 @default.
- W2897918988 citedByCount "7" @default.
- W2897918988 countsByYear W28979189882018 @default.
- W2897918988 countsByYear W28979189882019 @default.
- W2897918988 countsByYear W28979189882020 @default.
- W2897918988 countsByYear W28979189882021 @default.
- W2897918988 crossrefType "posted-content" @default.
- W2897918988 hasAuthorship W2897918988A5028940329 @default.
- W2897918988 hasAuthorship W2897918988A5051657374 @default.
- W2897918988 hasAuthorship W2897918988A5076660590 @default.
- W2897918988 hasConcept C105795698 @default.
- W2897918988 hasConcept C107673813 @default.
- W2897918988 hasConcept C111350023 @default.
- W2897918988 hasConcept C11413529 @default.
- W2897918988 hasConcept C119857082 @default.
- W2897918988 hasConcept C121332964 @default.
- W2897918988 hasConcept C154945302 @default.
- W2897918988 hasConcept C160234255 @default.
- W2897918988 hasConcept C163258240 @default.
- W2897918988 hasConcept C185592680 @default.
- W2897918988 hasConcept C198531522 @default.
- W2897918988 hasConcept C199360897 @default.
- W2897918988 hasConcept C204693719 @default.
- W2897918988 hasConcept C2524010 @default.
- W2897918988 hasConcept C2776214188 @default.
- W2897918988 hasConcept C2778012447 @default.
- W2897918988 hasConcept C2779803651 @default.
- W2897918988 hasConcept C2780992000 @default.
- W2897918988 hasConcept C28719098 @default.
- W2897918988 hasConcept C33923547 @default.
- W2897918988 hasConcept C37736160 @default.
- W2897918988 hasConcept C41008148 @default.
- W2897918988 hasConcept C41426520 @default.
- W2897918988 hasConcept C43617362 @default.
- W2897918988 hasConcept C62520636 @default.
- W2897918988 hasConcept C76155785 @default.
- W2897918988 hasConcept C94915269 @default.
- W2897918988 hasConceptScore W2897918988C105795698 @default.
- W2897918988 hasConceptScore W2897918988C107673813 @default.
- W2897918988 hasConceptScore W2897918988C111350023 @default.
- W2897918988 hasConceptScore W2897918988C11413529 @default.
- W2897918988 hasConceptScore W2897918988C119857082 @default.
- W2897918988 hasConceptScore W2897918988C121332964 @default.
- W2897918988 hasConceptScore W2897918988C154945302 @default.
- W2897918988 hasConceptScore W2897918988C160234255 @default.
- W2897918988 hasConceptScore W2897918988C163258240 @default.
- W2897918988 hasConceptScore W2897918988C185592680 @default.
- W2897918988 hasConceptScore W2897918988C198531522 @default.
- W2897918988 hasConceptScore W2897918988C199360897 @default.
- W2897918988 hasConceptScore W2897918988C204693719 @default.
- W2897918988 hasConceptScore W2897918988C2524010 @default.
- W2897918988 hasConceptScore W2897918988C2776214188 @default.
- W2897918988 hasConceptScore W2897918988C2778012447 @default.
- W2897918988 hasConceptScore W2897918988C2779803651 @default.
- W2897918988 hasConceptScore W2897918988C2780992000 @default.
- W2897918988 hasConceptScore W2897918988C28719098 @default.