Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897921159> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2897921159 abstract "Computers and human interaction evolved with the emergence of virtual assistants, which in practice is related to the evolution of Question Answering (QA) systems. This evolution demands more powerful, helpful, and aware QA systems, able to provide high-quality answers to a wide range of questions. A way to meet this level of requirement is to combine multiple restricted domain QAs to yield a high-quality open domain QA. This system can use a routing mechanism based on a hierarchical question domain classifier to select the proper restricted QA system to answer the user’s question. However, the creation and maintenance of a large and robust dataset of labeled questions required to train this mechanism are impractical to be done by hand. For tackling this problem, in this study, we present a strategy for automatically generating labeled datasets of questions from the same documents used as the sources of information demanded by the QA systems. To validate the proposed approach, we created a large dataset and applied it to train a hierarchical question domain classifier. Next, we evaluated the performance of this classifier using human-elaborated and labeled questions. The results indicated that the questions automatically created have high quality and thus they can be safely used in real-world applications." @default.
- W2897921159 created "2018-10-26" @default.
- W2897921159 creator A5027043464 @default.
- W2897921159 creator A5054738435 @default.
- W2897921159 creator A5070893483 @default.
- W2897921159 date "2018-07-01" @default.
- W2897921159 modified "2023-09-27" @default.
- W2897921159 title "Towards Automatically Creating Large Labeled Datasets for Training Question Domain Classifiers" @default.
- W2897921159 cites W1020256256 @default.
- W2897921159 cites W1524688041 @default.
- W2897921159 cites W1550206324 @default.
- W2897921159 cites W1620204465 @default.
- W2897921159 cites W1972945478 @default.
- W2897921159 cites W1979065383 @default.
- W2897921159 cites W1979068940 @default.
- W2897921159 cites W1979263599 @default.
- W2897921159 cites W1980910426 @default.
- W2897921159 cites W2005422315 @default.
- W2897921159 cites W2039957624 @default.
- W2897921159 cites W2061310592 @default.
- W2897921159 cites W2072148769 @default.
- W2897921159 cites W2086004682 @default.
- W2897921159 cites W2094874816 @default.
- W2897921159 cites W2106121453 @default.
- W2897921159 cites W2118978333 @default.
- W2897921159 cites W2149684865 @default.
- W2897921159 cites W2166348853 @default.
- W2897921159 cites W2169319776 @default.
- W2897921159 cites W2338565478 @default.
- W2897921159 cites W2435251607 @default.
- W2897921159 cites W2802785747 @default.
- W2897921159 cites W3159064672 @default.
- W2897921159 cites W583041054 @default.
- W2897921159 cites W70446908 @default.
- W2897921159 doi "https://doi.org/10.1109/ijcnn.2018.8489124" @default.
- W2897921159 hasPublicationYear "2018" @default.
- W2897921159 type Work @default.
- W2897921159 sameAs 2897921159 @default.
- W2897921159 citedByCount "0" @default.
- W2897921159 crossrefType "proceedings-article" @default.
- W2897921159 hasAuthorship W2897921159A5027043464 @default.
- W2897921159 hasAuthorship W2897921159A5054738435 @default.
- W2897921159 hasAuthorship W2897921159A5070893483 @default.
- W2897921159 hasConcept C111472728 @default.
- W2897921159 hasConcept C119857082 @default.
- W2897921159 hasConcept C124101348 @default.
- W2897921159 hasConcept C134306372 @default.
- W2897921159 hasConcept C138885662 @default.
- W2897921159 hasConcept C154945302 @default.
- W2897921159 hasConcept C23123220 @default.
- W2897921159 hasConcept C2776145971 @default.
- W2897921159 hasConcept C2779530757 @default.
- W2897921159 hasConcept C33923547 @default.
- W2897921159 hasConcept C36503486 @default.
- W2897921159 hasConcept C41008148 @default.
- W2897921159 hasConcept C51632099 @default.
- W2897921159 hasConcept C95623464 @default.
- W2897921159 hasConceptScore W2897921159C111472728 @default.
- W2897921159 hasConceptScore W2897921159C119857082 @default.
- W2897921159 hasConceptScore W2897921159C124101348 @default.
- W2897921159 hasConceptScore W2897921159C134306372 @default.
- W2897921159 hasConceptScore W2897921159C138885662 @default.
- W2897921159 hasConceptScore W2897921159C154945302 @default.
- W2897921159 hasConceptScore W2897921159C23123220 @default.
- W2897921159 hasConceptScore W2897921159C2776145971 @default.
- W2897921159 hasConceptScore W2897921159C2779530757 @default.
- W2897921159 hasConceptScore W2897921159C33923547 @default.
- W2897921159 hasConceptScore W2897921159C36503486 @default.
- W2897921159 hasConceptScore W2897921159C41008148 @default.
- W2897921159 hasConceptScore W2897921159C51632099 @default.
- W2897921159 hasConceptScore W2897921159C95623464 @default.
- W2897921159 hasLocation W28979211591 @default.
- W2897921159 hasOpenAccess W2897921159 @default.
- W2897921159 hasPrimaryLocation W28979211591 @default.
- W2897921159 hasRelatedWork W1589803022 @default.
- W2897921159 hasRelatedWork W1839883572 @default.
- W2897921159 hasRelatedWork W1996537998 @default.
- W2897921159 hasRelatedWork W2063487009 @default.
- W2897921159 hasRelatedWork W2232010405 @default.
- W2897921159 hasRelatedWork W2610151146 @default.
- W2897921159 hasRelatedWork W2889705046 @default.
- W2897921159 hasRelatedWork W2949280030 @default.
- W2897921159 hasRelatedWork W4206165802 @default.
- W2897921159 hasRelatedWork W4206722749 @default.
- W2897921159 isParatext "false" @default.
- W2897921159 isRetracted "false" @default.
- W2897921159 magId "2897921159" @default.
- W2897921159 workType "article" @default.