Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897931360> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2897931360 endingPage "S196" @default.
- W2897931360 startingPage "S196" @default.
- W2897931360 abstract "Regularization-based iterative CT reconstruction has demonstrated its tremendous power. Formulated under an optimization approach, regularization-based iterative CT reconstruction considers an objective function containing a data-fidelity term and a regularization term. With the latter introduced to enforce image quality, high quality images can be reconstructed under clinically desirable conditions, such as reduced imaging dose to patients. Yet there are always parameters in the problem, which govern tradeoffs between the two terms and impact solution image quality. Manual parameter tuning is not only tedious, but become impractical when many parameters exist. Motivated by recent advancements in deep-learning area that can accomplish tasks in a human-like manner, such as playing computer games, we propose to employ deep reinforcement learning (DRL) to develop a system that automatically adjusts parameters with human-level intelligence, such that the intensive efforts of manual parameter tuning can be released. We consider an example problem of CT reconstruction with pixel-wise total-variation (TV) regularization. We set up a parameter tuning policy network (PTPN). It maps an image patch to a decision that specifies the direction and amplitude of parameter adjustment for the pixel at the patch center. To train PTPN, a reward function is defined that favors improvement in image quality, as quantified by the difference between the solution image and the ground truth image, which is known at the training stage. We train PTPN via end-to-end deep DRL with experience replay technique. Once PTPN is trained, we test it in simulation and real experimental cases. During a reconstruction process, we initiate parameters randomly. PTPN continuously observes the intermediate reconstructed image and make decision to adjust the parameters, until the image quality cannot be further improved. In simulation studies, PTPN can intelligently guide the reconstruction process, yielding images with 3% lower error than that under the randomly initialized parameters. The resulting image is slightly better than that under manually tuned parameter (∼0.5% lower error). Similar behavior is observed in experimental data. For the problem of CT reconstruction with pixel-wise TV regularization, closed form solution of the optimal parameter values can be derived. The parameters tuned by PTPN appeared similar to the optimal parameters, demonstrating the effectiveness of PTPN. Under DRL, we have developed PTPN that can adjust parameters of an iterative CT reconstruction problem in a human-like manner. The resulting image is similar or better than those under manual parameter tuning." @default.
- W2897931360 created "2018-10-26" @default.
- W2897931360 creator A5000416618 @default.
- W2897931360 creator A5005437679 @default.
- W2897931360 creator A5018120191 @default.
- W2897931360 creator A5044127306 @default.
- W2897931360 creator A5066232843 @default.
- W2897931360 date "2018-11-01" @default.
- W2897931360 modified "2023-09-22" @default.
- W2897931360 title "Parameter Tuning in Regularization-Based Iterative CT Reconstruction Via Deep Reinforcement Learning" @default.
- W2897931360 doi "https://doi.org/10.1016/j.ijrobp.2018.07.092" @default.
- W2897931360 hasPublicationYear "2018" @default.
- W2897931360 type Work @default.
- W2897931360 sameAs 2897931360 @default.
- W2897931360 citedByCount "0" @default.
- W2897931360 crossrefType "journal-article" @default.
- W2897931360 hasAuthorship W2897931360A5000416618 @default.
- W2897931360 hasAuthorship W2897931360A5005437679 @default.
- W2897931360 hasAuthorship W2897931360A5018120191 @default.
- W2897931360 hasAuthorship W2897931360A5044127306 @default.
- W2897931360 hasAuthorship W2897931360A5066232843 @default.
- W2897931360 hasConcept C11413529 @default.
- W2897931360 hasConcept C115961682 @default.
- W2897931360 hasConcept C119857082 @default.
- W2897931360 hasConcept C141379421 @default.
- W2897931360 hasConcept C154945302 @default.
- W2897931360 hasConcept C160633673 @default.
- W2897931360 hasConcept C2776135515 @default.
- W2897931360 hasConcept C2776459999 @default.
- W2897931360 hasConcept C31972630 @default.
- W2897931360 hasConcept C41008148 @default.
- W2897931360 hasConcept C55020928 @default.
- W2897931360 hasConcept C76155785 @default.
- W2897931360 hasConcept C97541855 @default.
- W2897931360 hasConceptScore W2897931360C11413529 @default.
- W2897931360 hasConceptScore W2897931360C115961682 @default.
- W2897931360 hasConceptScore W2897931360C119857082 @default.
- W2897931360 hasConceptScore W2897931360C141379421 @default.
- W2897931360 hasConceptScore W2897931360C154945302 @default.
- W2897931360 hasConceptScore W2897931360C160633673 @default.
- W2897931360 hasConceptScore W2897931360C2776135515 @default.
- W2897931360 hasConceptScore W2897931360C2776459999 @default.
- W2897931360 hasConceptScore W2897931360C31972630 @default.
- W2897931360 hasConceptScore W2897931360C41008148 @default.
- W2897931360 hasConceptScore W2897931360C55020928 @default.
- W2897931360 hasConceptScore W2897931360C76155785 @default.
- W2897931360 hasConceptScore W2897931360C97541855 @default.
- W2897931360 hasIssue "3" @default.
- W2897931360 hasLocation W28979313601 @default.
- W2897931360 hasOpenAccess W2897931360 @default.
- W2897931360 hasPrimaryLocation W28979313601 @default.
- W2897931360 hasRelatedWork W121273120 @default.
- W2897931360 hasRelatedWork W1996751678 @default.
- W2897931360 hasRelatedWork W2090093270 @default.
- W2897931360 hasRelatedWork W2337415362 @default.
- W2897931360 hasRelatedWork W2520534200 @default.
- W2897931360 hasRelatedWork W2574052219 @default.
- W2897931360 hasRelatedWork W2740820121 @default.
- W2897931360 hasRelatedWork W3093404388 @default.
- W2897931360 hasRelatedWork W317572212 @default.
- W2897931360 hasRelatedWork W4312857205 @default.
- W2897931360 hasVolume "102" @default.
- W2897931360 isParatext "false" @default.
- W2897931360 isRetracted "false" @default.
- W2897931360 magId "2897931360" @default.
- W2897931360 workType "article" @default.