Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897932070> ?p ?o ?g. }
- W2897932070 endingPage "1383" @default.
- W2897932070 startingPage "1365" @default.
- W2897932070 abstract "The air quality index (AQI) is an important indicator of air quality. Owing to the randomness and non-stationarity inherent in AQI, it is still a challenging task to establish a reasonable analysis–forecast system for AQI. Previous studies primarily focused on enhancing either forecasting accuracy or stability and failed to improve both aspects simultaneously, leading to unsatisfactory results. In this study, a novel analysis–forecast system is proposed that consists of complexity analysis, data preprocessing, and optimize–forecast modules and addresses the problems of air quality monitoring. The proposed system performs a complexity analysis of the original series based on sample entropy and data preprocessing using a novel feature selection model that integrates a decomposition technique and an optimization algorithm for removing noise and selecting the optimal input structure, and then forecasts hourly AQI series by utilizing a modified least squares support vector machine optimized by a multi-objective multi-verse optimization algorithm. Experiments based on datasets from eight major cities in China demonstrated that the proposed system can simultaneously obtain high accuracy and strong stability and is thus efficient and reliable for air quality monitoring." @default.
- W2897932070 created "2018-10-26" @default.
- W2897932070 creator A5009348332 @default.
- W2897932070 creator A5044720245 @default.
- W2897932070 creator A5049384131 @default.
- W2897932070 creator A5057092809 @default.
- W2897932070 date "2019-01-01" @default.
- W2897932070 modified "2023-10-16" @default.
- W2897932070 title "Novel analysis–forecast system based on multi-objective optimization for air quality index" @default.
- W2897932070 cites W1274130343 @default.
- W2897932070 cites W1514832573 @default.
- W2897932070 cites W1968840994 @default.
- W2897932070 cites W1976213122 @default.
- W2897932070 cites W1982561564 @default.
- W2897932070 cites W1986030286 @default.
- W2897932070 cites W1993526212 @default.
- W2897932070 cites W2003090287 @default.
- W2897932070 cites W2013526194 @default.
- W2897932070 cites W2020775395 @default.
- W2897932070 cites W2029796035 @default.
- W2897932070 cites W2053226616 @default.
- W2897932070 cites W2061232022 @default.
- W2897932070 cites W2065500143 @default.
- W2897932070 cites W2068878027 @default.
- W2897932070 cites W2077270156 @default.
- W2897932070 cites W2084003102 @default.
- W2897932070 cites W2094429529 @default.
- W2897932070 cites W2096166399 @default.
- W2897932070 cites W2102093423 @default.
- W2897932070 cites W2108587916 @default.
- W2897932070 cites W2110309989 @default.
- W2897932070 cites W2120390927 @default.
- W2897932070 cites W2125899728 @default.
- W2897932070 cites W2130444042 @default.
- W2897932070 cites W2152551290 @default.
- W2897932070 cites W2165171393 @default.
- W2897932070 cites W2174096823 @default.
- W2897932070 cites W2282992258 @default.
- W2897932070 cites W2331700789 @default.
- W2897932070 cites W2337803771 @default.
- W2897932070 cites W2481453975 @default.
- W2897932070 cites W2492494189 @default.
- W2897932070 cites W2543678400 @default.
- W2897932070 cites W2580112876 @default.
- W2897932070 cites W2590890587 @default.
- W2897932070 cites W2592540809 @default.
- W2897932070 cites W2604864721 @default.
- W2897932070 cites W2605800522 @default.
- W2897932070 cites W2610454547 @default.
- W2897932070 cites W2616100520 @default.
- W2897932070 cites W2735292160 @default.
- W2897932070 cites W2739924642 @default.
- W2897932070 cites W2749546756 @default.
- W2897932070 cites W2754663885 @default.
- W2897932070 cites W2760506659 @default.
- W2897932070 cites W2762198305 @default.
- W2897932070 cites W2765192940 @default.
- W2897932070 cites W2766047633 @default.
- W2897932070 cites W2766067319 @default.
- W2897932070 cites W2767707525 @default.
- W2897932070 cites W2767768852 @default.
- W2897932070 cites W2772469222 @default.
- W2897932070 cites W2773000467 @default.
- W2897932070 cites W2773931999 @default.
- W2897932070 cites W2774119575 @default.
- W2897932070 cites W2777889442 @default.
- W2897932070 cites W2791299376 @default.
- W2897932070 cites W2791693928 @default.
- W2897932070 cites W2792648952 @default.
- W2897932070 cites W2792829451 @default.
- W2897932070 doi "https://doi.org/10.1016/j.jclepro.2018.10.129" @default.
- W2897932070 hasPublicationYear "2019" @default.
- W2897932070 type Work @default.
- W2897932070 sameAs 2897932070 @default.
- W2897932070 citedByCount "94" @default.
- W2897932070 countsByYear W28979320702019 @default.
- W2897932070 countsByYear W28979320702020 @default.
- W2897932070 countsByYear W28979320702021 @default.
- W2897932070 countsByYear W28979320702022 @default.
- W2897932070 countsByYear W28979320702023 @default.
- W2897932070 crossrefType "journal-article" @default.
- W2897932070 hasAuthorship W2897932070A5009348332 @default.
- W2897932070 hasAuthorship W2897932070A5044720245 @default.
- W2897932070 hasAuthorship W2897932070A5049384131 @default.
- W2897932070 hasAuthorship W2897932070A5057092809 @default.
- W2897932070 hasBestOaLocation W28979320702 @default.
- W2897932070 hasConcept C10551718 @default.
- W2897932070 hasConcept C105795698 @default.
- W2897932070 hasConcept C106301342 @default.
- W2897932070 hasConcept C112972136 @default.
- W2897932070 hasConcept C119857082 @default.
- W2897932070 hasConcept C121332964 @default.
- W2897932070 hasConcept C124101348 @default.
- W2897932070 hasConcept C125112378 @default.
- W2897932070 hasConcept C126314574 @default.
- W2897932070 hasConcept C148483581 @default.
- W2897932070 hasConcept C151406439 @default.
- W2897932070 hasConcept C153294291 @default.