Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897951180> ?p ?o ?g. }
- W2897951180 endingPage "9452" @default.
- W2897951180 startingPage "9428" @default.
- W2897951180 abstract "In the epoch of the human-induced climate change, seagrasses can mitigate the resulting negative impacts due to their carbon sequestration ability. The endemic and dominant in the Mediterranean Posidonia oceanica seagrass contains the largest stocks of organic carbon among all seagrass species, yet it undergoes a significant regression in its extent. Therefore, suitable quantitative assessment of its extent and optically shallow environment are required to allow good conservation and management practices. Here, we parameterise a semi-analytical inversion model which employs above-surface remote sensing reflectance of Sentinel-2A to derive water column and bottom properties in the Thermaikos Gulf, NW Aegean Sea, Greece (eastern Mediterranean). In the model, the diffuse attenuation coefficients are expressed as functions of absorption and backscattering coefficients. We apply a comprehensive pre-processing workflow which includes atmospheric correction using C2RCC (Case 2 Regional CoastColour) neural network, resampling of the lower spatial resolution Sentinel-2A bands to 10m/pixel, as well as empirical derivation of water bathymetry and machine learning-based classification of the resulting bottom properties using the Support Vector Machines. SVM-based classification of benthic reflectance reveals ~300 ha of P. oceanica seagrass between 2 and 16 m of depth, and yields very high producer and user accuracies of 95.3% and 99.5%, respectively. Sources of errors and uncertainties are discussed. All in all, recent advances in Earth Observation in terms of optical satellite technology, cloud computing and machine learning algorithms have created the perfect storm which could aid high spatio-temporal, large-scale seagrass habitat mapping and monitoring, allowing for its integration to the Analysis Ready Data era and ultimately enabling more efficient management and conservation in the epoch of climate change." @default.
- W2897951180 created "2018-10-26" @default.
- W2897951180 creator A5052386553 @default.
- W2897951180 creator A5082889829 @default.
- W2897951180 date "2018-10-11" @default.
- W2897951180 modified "2023-10-02" @default.
- W2897951180 title "Machine learning-based retrieval of benthic reflectance and <i>Posidonia oceanica</i> seagrass extent using a semi-analytical inversion of Sentinel-2 satellite data" @default.
- W2897951180 cites W1754365911 @default.
- W2897951180 cites W1965671380 @default.
- W2897951180 cites W1976556171 @default.
- W2897951180 cites W1983022806 @default.
- W2897951180 cites W1984570510 @default.
- W2897951180 cites W1998312005 @default.
- W2897951180 cites W2027967033 @default.
- W2897951180 cites W2027975676 @default.
- W2897951180 cites W2028462240 @default.
- W2897951180 cites W2028683033 @default.
- W2897951180 cites W2028979491 @default.
- W2897951180 cites W2030901297 @default.
- W2897951180 cites W2033583109 @default.
- W2897951180 cites W2033630816 @default.
- W2897951180 cites W2042107857 @default.
- W2897951180 cites W2045364433 @default.
- W2897951180 cites W2063907334 @default.
- W2897951180 cites W2067653716 @default.
- W2897951180 cites W2070022366 @default.
- W2897951180 cites W2076739620 @default.
- W2897951180 cites W2084288780 @default.
- W2897951180 cites W2086759180 @default.
- W2897951180 cites W2094264433 @default.
- W2897951180 cites W2094785904 @default.
- W2897951180 cites W2101678239 @default.
- W2897951180 cites W2103348345 @default.
- W2897951180 cites W2104212942 @default.
- W2897951180 cites W2105012295 @default.
- W2897951180 cites W2107301689 @default.
- W2897951180 cites W2109252556 @default.
- W2897951180 cites W2117061508 @default.
- W2897951180 cites W2128916715 @default.
- W2897951180 cites W2134293411 @default.
- W2897951180 cites W2142821935 @default.
- W2897951180 cites W2148143762 @default.
- W2897951180 cites W2152686492 @default.
- W2897951180 cites W2153635508 @default.
- W2897951180 cites W2156909104 @default.
- W2897951180 cites W2169939759 @default.
- W2897951180 cites W2171241984 @default.
- W2897951180 cites W2171451973 @default.
- W2897951180 cites W2510978004 @default.
- W2897951180 cites W2530322545 @default.
- W2897951180 cites W2531213996 @default.
- W2897951180 cites W2551781986 @default.
- W2897951180 cites W2615064060 @default.
- W2897951180 cites W2620691384 @default.
- W2897951180 cites W2732932856 @default.
- W2897951180 cites W2751239848 @default.
- W2897951180 cites W2766615485 @default.
- W2897951180 cites W2766685544 @default.
- W2897951180 cites W2769010646 @default.
- W2897951180 cites W2785473200 @default.
- W2897951180 cites W2806339229 @default.
- W2897951180 cites W2886041340 @default.
- W2897951180 cites W956432429 @default.
- W2897951180 doi "https://doi.org/10.1080/01431161.2018.1519289" @default.
- W2897951180 hasPublicationYear "2018" @default.
- W2897951180 type Work @default.
- W2897951180 sameAs 2897951180 @default.
- W2897951180 citedByCount "20" @default.
- W2897951180 countsByYear W28979511802018 @default.
- W2897951180 countsByYear W28979511802019 @default.
- W2897951180 countsByYear W28979511802020 @default.
- W2897951180 countsByYear W28979511802021 @default.
- W2897951180 countsByYear W28979511802022 @default.
- W2897951180 countsByYear W28979511802023 @default.
- W2897951180 crossrefType "journal-article" @default.
- W2897951180 hasAuthorship W2897951180A5052386553 @default.
- W2897951180 hasAuthorship W2897951180A5082889829 @default.
- W2897951180 hasBestOaLocation W28979511802 @default.
- W2897951180 hasConcept C109007969 @default.
- W2897951180 hasConcept C114793014 @default.
- W2897951180 hasConcept C127313418 @default.
- W2897951180 hasConcept C127413603 @default.
- W2897951180 hasConcept C13772937 @default.
- W2897951180 hasConcept C146978453 @default.
- W2897951180 hasConcept C173163844 @default.
- W2897951180 hasConcept C181843262 @default.
- W2897951180 hasConcept C185933670 @default.
- W2897951180 hasConcept C18903297 @default.
- W2897951180 hasConcept C1893757 @default.
- W2897951180 hasConcept C19269812 @default.
- W2897951180 hasConcept C2777400808 @default.
- W2897951180 hasConcept C2778329001 @default.
- W2897951180 hasConcept C2779043415 @default.
- W2897951180 hasConcept C2780687703 @default.
- W2897951180 hasConcept C39432304 @default.
- W2897951180 hasConcept C4646841 @default.
- W2897951180 hasConcept C62649853 @default.
- W2897951180 hasConcept C86803240 @default.