Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897952671> ?p ?o ?g. }
- W2897952671 endingPage "9" @default.
- W2897952671 startingPage "1" @default.
- W2897952671 abstract "Purpose . Metrics of the brain network architecture derived from resting-state fMRI have been shown to provide physiologically meaningful markers of IQ in children with epilepsy. However, traditional measures of functional connectivity (FC), specifically the Pearson correlation, assume a dominant linear relationship between BOLD time courses; this assumption may not be valid. Mutual information is an alternative measure of FC which has shown promise in the study of complex networks due to its ability to flexibly capture association of diverse forms. We aimed to compare network metrics derived from mutual information-defined FC to those derived from traditional correlation in terms of their capacity to predict patient-level IQ. Materials and Methods . Patients were retrospectively identified with the following: (1) focal epilepsy; (2) resting-state fMRI; and (3) full-scale IQ by a neuropsychologist. Brain network nodes were defined by anatomic parcellation. Parcellation was performed at the size threshold of 350 mm 2 , resulting in networks containing 780 nodes. Whole-brain, weighted graphs were then constructed according to the pairwise connectivity between nodes. In the traditional condition, edges (connections) between each pair of nodes were defined as the absolute value of the Pearson correlation coefficient between their BOLD time courses. In the mutual information condition, edges were defined as the mutual information between time courses. The following metrics were then calculated for each weighted graph: clustering coefficient, modularity, characteristic path length, and global efficiency. A machine learning algorithm was used to predict the IQ of each individual based on their network metrics. Prediction accuracy was assessed as the fractional variation explained for each condition. Results . Twenty-four patients met the inclusion criteria (age: 8–18 years). All brain networks demonstrated expected small-world properties. Network metrics derived from mutual information-defined FC significantly outperformed the use of the Pearson correlation. Specifically, fractional variation explained was 49% (95% CI: 46%, 51%) for the mutual information method; the Pearson correlation demonstrated a variation of 17% (95% CI: 13%, 19%). Conclusion . Mutual information-defined functional connectivity captures physiologically relevant features of the brain network better than correlation. Clinical Relevance . Optimizing the capacity to predict cognitive phenotypes at the patient level is a necessary step toward the clinical utility of network-based biomarkers." @default.
- W2897952671 created "2018-10-26" @default.
- W2897952671 creator A5000247856 @default.
- W2897952671 creator A5027275084 @default.
- W2897952671 creator A5073612272 @default.
- W2897952671 creator A5076699095 @default.
- W2897952671 creator A5077512372 @default.
- W2897952671 date "2018-10-22" @default.
- W2897952671 modified "2023-10-13" @default.
- W2897952671 title "Mutual Information Better Quantifies Brain Network Architecture in Children with Epilepsy" @default.
- W2897952671 cites W1169679103 @default.
- W2897952671 cites W1618211210 @default.
- W2897952671 cites W1979119850 @default.
- W2897952671 cites W1991971712 @default.
- W2897952671 cites W2002222426 @default.
- W2897952671 cites W2003282853 @default.
- W2897952671 cites W2006096283 @default.
- W2897952671 cites W2011541551 @default.
- W2897952671 cites W2020745232 @default.
- W2897952671 cites W2022772246 @default.
- W2897952671 cites W2022806167 @default.
- W2897952671 cites W2035678379 @default.
- W2897952671 cites W2036630433 @default.
- W2897952671 cites W2038068904 @default.
- W2897952671 cites W2051306708 @default.
- W2897952671 cites W2051633111 @default.
- W2897952671 cites W2052615191 @default.
- W2897952671 cites W2054482635 @default.
- W2897952671 cites W2059554831 @default.
- W2897952671 cites W2073017605 @default.
- W2897952671 cites W2089066085 @default.
- W2897952671 cites W2091906388 @default.
- W2897952671 cites W2105629360 @default.
- W2897952671 cites W2113331303 @default.
- W2897952671 cites W2121369614 @default.
- W2897952671 cites W2125670826 @default.
- W2897952671 cites W2141883755 @default.
- W2897952671 cites W2155072326 @default.
- W2897952671 cites W2155963684 @default.
- W2897952671 cites W2159929956 @default.
- W2897952671 cites W2165118109 @default.
- W2897952671 cites W2165700458 @default.
- W2897952671 cites W2165985389 @default.
- W2897952671 cites W2167822639 @default.
- W2897952671 cites W2191021609 @default.
- W2897952671 cites W2283370759 @default.
- W2897952671 cites W2530424517 @default.
- W2897952671 cites W2567412570 @default.
- W2897952671 cites W2911964244 @default.
- W2897952671 doi "https://doi.org/10.1155/2018/6142898" @default.
- W2897952671 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6217888" @default.
- W2897952671 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30425750" @default.
- W2897952671 hasPublicationYear "2018" @default.
- W2897952671 type Work @default.
- W2897952671 sameAs 2897952671 @default.
- W2897952671 citedByCount "12" @default.
- W2897952671 countsByYear W28979526712020 @default.
- W2897952671 countsByYear W28979526712021 @default.
- W2897952671 countsByYear W28979526712022 @default.
- W2897952671 countsByYear W28979526712023 @default.
- W2897952671 crossrefType "journal-article" @default.
- W2897952671 hasAuthorship W2897952671A5000247856 @default.
- W2897952671 hasAuthorship W2897952671A5027275084 @default.
- W2897952671 hasAuthorship W2897952671A5073612272 @default.
- W2897952671 hasAuthorship W2897952671A5076699095 @default.
- W2897952671 hasAuthorship W2897952671A5077512372 @default.
- W2897952671 hasBestOaLocation W28979526711 @default.
- W2897952671 hasConcept C104954878 @default.
- W2897952671 hasConcept C105795698 @default.
- W2897952671 hasConcept C117220453 @default.
- W2897952671 hasConcept C119857082 @default.
- W2897952671 hasConcept C132525143 @default.
- W2897952671 hasConcept C14216870 @default.
- W2897952671 hasConcept C142853389 @default.
- W2897952671 hasConcept C152139883 @default.
- W2897952671 hasConcept C153180895 @default.
- W2897952671 hasConcept C154945302 @default.
- W2897952671 hasConcept C15744967 @default.
- W2897952671 hasConcept C169760540 @default.
- W2897952671 hasConcept C169900460 @default.
- W2897952671 hasConcept C184898388 @default.
- W2897952671 hasConcept C195780805 @default.
- W2897952671 hasConcept C204948658 @default.
- W2897952671 hasConcept C22047676 @default.
- W2897952671 hasConcept C2524010 @default.
- W2897952671 hasConcept C2779097318 @default.
- W2897952671 hasConcept C2779478453 @default.
- W2897952671 hasConcept C2780092901 @default.
- W2897952671 hasConcept C3018011982 @default.
- W2897952671 hasConcept C31258907 @default.
- W2897952671 hasConcept C33923547 @default.
- W2897952671 hasConcept C41008148 @default.
- W2897952671 hasConcept C45715564 @default.
- W2897952671 hasConcept C542102704 @default.
- W2897952671 hasConcept C54355233 @default.
- W2897952671 hasConcept C55078378 @default.
- W2897952671 hasConcept C66324658 @default.
- W2897952671 hasConcept C73555534 @default.