Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897955685> ?p ?o ?g. }
- W2897955685 endingPage "162" @default.
- W2897955685 startingPage "152" @default.
- W2897955685 abstract "The oxidation state of a basaltic liquid may be obtained from the average valence state of Fe in its quenched glass. Suitable glasses are widely available from the basalts erupted at Mid-Ocean Ridges (MORB). Measurements of Fe3+/∑Fe, where ∑Fe=Fe2++Fe3+, by XANES spectroscopy of a globally representative sample of these MORB glasses are in good agreement with the most recent literature values determined by wet chemistry, but have improved precision, with an expected standard deviation of ±0.01 in Fe3+/∑Fe for each independent measurement. These precise data allow the geochemical controls on MORB redox systematics at both global and local scales to be evaluated. At the global scale, the relationship between log[Fe2O3] and [MgO] shows that Fe3+ behaves like a lightly incompatible element (LICE) during the crustal evolution of MORB, with its incompatibility between those of the redox-insensitive elements Li and In. The variability of Fe3+ about this global trend is also consistent with that of redox-insensitive elements of similar incompatibility, implying no external buffering of oxygen fugacity (fO2). The variability of Fe3+ is anti-correlated with the variabilities of Sr and Na, which are compatible in plagioclase, but is positively correlated with the variabilities of elements that partition preferentially into clinopyroxene and/or olivine rather than plagioclase, showing that its variability is controlled at least partly by varying ratios of plagioclase to clinopyroxene and olivine during the crustal evolution of MORB. Deviations of Fe3+ concentrations from the global trend are, like those of other LICE, anticorrelated with the deviations from their global trends of the very incompatible elements (VICE). Extrapolation of the global trend to an assumed parental melt at 10.4 wt% [MgO] gives [Fe2O3]o, the concentration of Fe2O3 in the global average MORB parental melt, of 0.6 wt%, which is consistent with 15–20% partial melting of a spinel lherzolite source with 0.2 to 0.3 wt% Fe2O3. This estimate of source Fe2O3 agrees with the estimate for fertile upper mantle lherzolite deduced from measurements of Fe3+/∑Fe and total Fe in the minerals of spinel peridotite xenoliths from the lithosphere. The fO2 of the MORB glasses at 1 bar may be calculated from their measured Fe3+/∑Fe using a new parameterization of 478 experimental data from the literature with <60 wt% SiO2. The need for the new parameterization arises from recent experimental studies, which, among other aspects, are consistent with the ideal stoichiometry governing the thermodynamic relationship between Fe3+/Fe2+ and fO2, namely Fe3+/Fe2+ ∝ (fO2)0.25. The parameterization gives:log10(Fe3+/Fe2+)=0.25ΔQFM−1.35+0.034[Na2O]+0.044[K2O]+0.023[CaO]−0.18[P2O5] where ΔQFM is the difference between the fO2 of the silicate melt and the quartz–fayalite–magnetite buffer in log10 units, logfO2(QFM) =8.58−25050/T, relative to the conventional standard state of pure O2 at 105 Pa, T is in K, and [Na2O] etc., are the concentrations of the oxide components in weight percent. The global average ΔQFM recorded by MORB glasses in the compositional range of 5 to 10 wt% MgO is +0.2 ±0.3, with a small but resolvable increase with decreasing MgO. There is no evidence that Fe3+/∑Fe systematics in MORB are influenced by interactions with other polyvalent elements like S or Cr." @default.
- W2897955685 created "2018-10-26" @default.
- W2897955685 creator A5010956897 @default.
- W2897955685 creator A5047966537 @default.
- W2897955685 creator A5064900639 @default.
- W2897955685 date "2018-12-01" @default.
- W2897955685 modified "2023-10-18" @default.
- W2897955685 title "The oxidation state of iron in Mid-Ocean Ridge Basaltic (MORB) glasses: Implications for their petrogenesis and oxygen fugacities" @default.
- W2897955685 cites W1893068022 @default.
- W2897955685 cites W1966609916 @default.
- W2897955685 cites W1976273059 @default.
- W2897955685 cites W1976788350 @default.
- W2897955685 cites W1978544473 @default.
- W2897955685 cites W1988520903 @default.
- W2897955685 cites W1996089667 @default.
- W2897955685 cites W2011845603 @default.
- W2897955685 cites W2016252394 @default.
- W2897955685 cites W2019408121 @default.
- W2897955685 cites W2031103627 @default.
- W2897955685 cites W2033504045 @default.
- W2897955685 cites W2035383650 @default.
- W2897955685 cites W2040092205 @default.
- W2897955685 cites W2041807511 @default.
- W2897955685 cites W2046356747 @default.
- W2897955685 cites W2054815623 @default.
- W2897955685 cites W2056910670 @default.
- W2897955685 cites W2061048095 @default.
- W2897955685 cites W2066733046 @default.
- W2897955685 cites W2069205463 @default.
- W2897955685 cites W2070305851 @default.
- W2897955685 cites W2072954890 @default.
- W2897955685 cites W2076392911 @default.
- W2897955685 cites W2086379007 @default.
- W2897955685 cites W2089866476 @default.
- W2897955685 cites W2093630957 @default.
- W2897955685 cites W2094966197 @default.
- W2897955685 cites W2094977742 @default.
- W2897955685 cites W2099995121 @default.
- W2897955685 cites W2112622604 @default.
- W2897955685 cites W2122131095 @default.
- W2897955685 cites W2125045137 @default.
- W2897955685 cites W2133487622 @default.
- W2897955685 cites W2141176070 @default.
- W2897955685 cites W2150417748 @default.
- W2897955685 cites W2154403386 @default.
- W2897955685 cites W2161797530 @default.
- W2897955685 cites W2204827812 @default.
- W2897955685 cites W2215717315 @default.
- W2897955685 cites W2314551263 @default.
- W2897955685 cites W2315818844 @default.
- W2897955685 cites W2330461144 @default.
- W2897955685 cites W2469445113 @default.
- W2897955685 cites W2530248222 @default.
- W2897955685 cites W2607107200 @default.
- W2897955685 cites W2764016245 @default.
- W2897955685 cites W2779431621 @default.
- W2897955685 cites W2781674151 @default.
- W2897955685 cites W4242381076 @default.
- W2897955685 cites W926792444 @default.
- W2897955685 doi "https://doi.org/10.1016/j.epsl.2018.10.002" @default.
- W2897955685 hasPublicationYear "2018" @default.
- W2897955685 type Work @default.
- W2897955685 sameAs 2897955685 @default.
- W2897955685 citedByCount "84" @default.
- W2897955685 countsByYear W28979556852019 @default.
- W2897955685 countsByYear W28979556852020 @default.
- W2897955685 countsByYear W28979556852021 @default.
- W2897955685 countsByYear W28979556852022 @default.
- W2897955685 countsByYear W28979556852023 @default.
- W2897955685 crossrefType "journal-article" @default.
- W2897955685 hasAuthorship W2897955685A5010956897 @default.
- W2897955685 hasAuthorship W2897955685A5047966537 @default.
- W2897955685 hasAuthorship W2897955685A5064900639 @default.
- W2897955685 hasBestOaLocation W28979556852 @default.
- W2897955685 hasConcept C127313418 @default.
- W2897955685 hasConcept C151730666 @default.
- W2897955685 hasConcept C161509811 @default.
- W2897955685 hasConcept C161790260 @default.
- W2897955685 hasConcept C17409809 @default.
- W2897955685 hasConcept C179104552 @default.
- W2897955685 hasConcept C185592680 @default.
- W2897955685 hasConcept C2778591166 @default.
- W2897955685 hasConcept C2779181077 @default.
- W2897955685 hasConcept C2779870107 @default.
- W2897955685 hasConcept C2780364934 @default.
- W2897955685 hasConcept C44938399 @default.
- W2897955685 hasConcept C51151373 @default.
- W2897955685 hasConcept C55493867 @default.
- W2897955685 hasConcept C55904794 @default.
- W2897955685 hasConcept C67236022 @default.
- W2897955685 hasConcept C93746451 @default.
- W2897955685 hasConceptScore W2897955685C127313418 @default.
- W2897955685 hasConceptScore W2897955685C151730666 @default.
- W2897955685 hasConceptScore W2897955685C161509811 @default.
- W2897955685 hasConceptScore W2897955685C161790260 @default.
- W2897955685 hasConceptScore W2897955685C17409809 @default.
- W2897955685 hasConceptScore W2897955685C179104552 @default.
- W2897955685 hasConceptScore W2897955685C185592680 @default.