Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897961390> ?p ?o ?g. }
- W2897961390 abstract "Bio-inspired neuromorphic hardware is a research direction to approach brain's computational power and energy efficiency. Spiking neural networks (SNN) encode information as sparsely distributed spike trains and employ spike-timingdependent plasticity (STDP) mechanism for learning. Existing hardware implementations of SNN are limited in scale or do not have in-hardware learning capability. In this work, we propose a low-cost scalable Network-on-Chip (NoC) based SNN hardware architecture with fully distributed in-hardware STDP learning capability. All hardware neurons work in parallel and communicate through the NoC. This enables chip-level interconnection, scalability and reconfigurability necessary for deploying different applications. The hardware is applied to learn MNIST digits as an evaluation of its learning capability. We explore the design space to study the trade-offs between speed, area and energy. How to use this procedure to find optimal architecture configuration is also discussed." @default.
- W2897961390 created "2018-10-26" @default.
- W2897961390 creator A5018468480 @default.
- W2897961390 creator A5037729379 @default.
- W2897961390 creator A5051195699 @default.
- W2897961390 creator A5053617387 @default.
- W2897961390 date "2018-07-01" @default.
- W2897961390 modified "2023-09-24" @default.
- W2897961390 title "Scalable NoC-based Neuromorphic Hardware Learning and Inference" @default.
- W2897961390 cites W101771737 @default.
- W2897961390 cites W1986089612 @default.
- W2897961390 cites W1994221466 @default.
- W2897961390 cites W2003400208 @default.
- W2897961390 cites W2003837387 @default.
- W2897961390 cites W2026145098 @default.
- W2897961390 cites W2032832574 @default.
- W2897961390 cites W2042211399 @default.
- W2897961390 cites W2046500578 @default.
- W2897961390 cites W2067709814 @default.
- W2897961390 cites W2083407323 @default.
- W2897961390 cites W2098241945 @default.
- W2897961390 cites W2138913040 @default.
- W2897961390 cites W2149561999 @default.
- W2897961390 cites W2153041354 @default.
- W2897961390 cites W2153287508 @default.
- W2897961390 cites W2163403022 @default.
- W2897961390 cites W2259268810 @default.
- W2897961390 cites W2508268073 @default.
- W2897961390 cites W2509538613 @default.
- W2897961390 cites W2512078726 @default.
- W2897961390 cites W2532666972 @default.
- W2897961390 cites W2550740543 @default.
- W2897961390 cites W2551814622 @default.
- W2897961390 cites W2588534033 @default.
- W2897961390 cites W2597215741 @default.
- W2897961390 cites W2613205562 @default.
- W2897961390 cites W2735894830 @default.
- W2897961390 cites W2757830409 @default.
- W2897961390 cites W2962820060 @default.
- W2897961390 cites W2963207526 @default.
- W2897961390 cites W3104393472 @default.
- W2897961390 cites W4240798929 @default.
- W2897961390 cites W4253638730 @default.
- W2897961390 doi "https://doi.org/10.1109/ijcnn.2018.8489619" @default.
- W2897961390 hasPublicationYear "2018" @default.
- W2897961390 type Work @default.
- W2897961390 sameAs 2897961390 @default.
- W2897961390 citedByCount "18" @default.
- W2897961390 countsByYear W28979613902019 @default.
- W2897961390 countsByYear W28979613902020 @default.
- W2897961390 countsByYear W28979613902021 @default.
- W2897961390 countsByYear W28979613902022 @default.
- W2897961390 crossrefType "proceedings-article" @default.
- W2897961390 hasAuthorship W2897961390A5018468480 @default.
- W2897961390 hasAuthorship W2897961390A5037729379 @default.
- W2897961390 hasAuthorship W2897961390A5051195699 @default.
- W2897961390 hasAuthorship W2897961390A5053617387 @default.
- W2897961390 hasBestOaLocation W28979613902 @default.
- W2897961390 hasConcept C115903868 @default.
- W2897961390 hasConcept C11731999 @default.
- W2897961390 hasConcept C118524514 @default.
- W2897961390 hasConcept C119599485 @default.
- W2897961390 hasConcept C127413603 @default.
- W2897961390 hasConcept C128519102 @default.
- W2897961390 hasConcept C149635348 @default.
- W2897961390 hasConcept C151927369 @default.
- W2897961390 hasConcept C154945302 @default.
- W2897961390 hasConcept C190502265 @default.
- W2897961390 hasConcept C2742236 @default.
- W2897961390 hasConcept C2776221188 @default.
- W2897961390 hasConcept C2780149590 @default.
- W2897961390 hasConcept C2781390188 @default.
- W2897961390 hasConcept C41008148 @default.
- W2897961390 hasConcept C42935608 @default.
- W2897961390 hasConcept C48044578 @default.
- W2897961390 hasConcept C50644808 @default.
- W2897961390 hasConcept C76155785 @default.
- W2897961390 hasConcept C77088390 @default.
- W2897961390 hasConcept C9390403 @default.
- W2897961390 hasConceptScore W2897961390C115903868 @default.
- W2897961390 hasConceptScore W2897961390C11731999 @default.
- W2897961390 hasConceptScore W2897961390C118524514 @default.
- W2897961390 hasConceptScore W2897961390C119599485 @default.
- W2897961390 hasConceptScore W2897961390C127413603 @default.
- W2897961390 hasConceptScore W2897961390C128519102 @default.
- W2897961390 hasConceptScore W2897961390C149635348 @default.
- W2897961390 hasConceptScore W2897961390C151927369 @default.
- W2897961390 hasConceptScore W2897961390C154945302 @default.
- W2897961390 hasConceptScore W2897961390C190502265 @default.
- W2897961390 hasConceptScore W2897961390C2742236 @default.
- W2897961390 hasConceptScore W2897961390C2776221188 @default.
- W2897961390 hasConceptScore W2897961390C2780149590 @default.
- W2897961390 hasConceptScore W2897961390C2781390188 @default.
- W2897961390 hasConceptScore W2897961390C41008148 @default.
- W2897961390 hasConceptScore W2897961390C42935608 @default.
- W2897961390 hasConceptScore W2897961390C48044578 @default.
- W2897961390 hasConceptScore W2897961390C50644808 @default.
- W2897961390 hasConceptScore W2897961390C76155785 @default.
- W2897961390 hasConceptScore W2897961390C77088390 @default.
- W2897961390 hasConceptScore W2897961390C9390403 @default.