Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897961925> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2897961925 abstract "In the power system, the load pattern of users is important for electricity price formulation, abnormal electricity consumption detection and load forecasting. Accurately identifying the load patterns effectively improve the overall load forecasting performance of the power grid. However, due to many factors affecting the load, identifying load patterns is not a simple job. In this paper, the features of load data are extracted and different load patterns of users are identified. In the pattern classification, K-means clustering is used. In feature extraction, PCA and prior knowledge were respectively used for dimensionality reduction to extract new features in the past. Combining the advantages of PCA and prior knowledge, a new method, namely, weighted combination of the obtained features from two former methods, is adopted to extract new features and identify the user's load pattern. In the similarity measure, the variance of each feature is taken as its weight, and the clustering result is superior to that of PCA and prior knowledge. In the numerical simulation, it is found that the clustering results using the new method in this paper are better than those using only PCA to reduce dimensionality or using prior knowledge to reduce dimensionality. In the experiment, the users in a certain area were divided into four categories according to the clustering result of load data: peak electricity type, partial peak electricity type I, partial peak electricity type II and abnormal electricity type." @default.
- W2897961925 created "2018-10-26" @default.
- W2897961925 creator A5008919658 @default.
- W2897961925 creator A5014455930 @default.
- W2897961925 creator A5023719427 @default.
- W2897961925 creator A5030249903 @default.
- W2897961925 creator A5037504365 @default.
- W2897961925 creator A5056579154 @default.
- W2897961925 creator A5065134331 @default.
- W2897961925 date "2018-07-01" @default.
- W2897961925 modified "2023-09-24" @default.
- W2897961925 title "Hybrid Features based K-means Clustering Algorithm for use in Electricity Customer Load Pattern Analysis" @default.
- W2897961925 cites W2010472418 @default.
- W2897961925 cites W2011430131 @default.
- W2897961925 cites W2066384055 @default.
- W2897961925 cites W2170820890 @default.
- W2897961925 cites W2209508536 @default.
- W2897961925 doi "https://doi.org/10.23919/chicc.2018.8483451" @default.
- W2897961925 hasPublicationYear "2018" @default.
- W2897961925 type Work @default.
- W2897961925 sameAs 2897961925 @default.
- W2897961925 citedByCount "2" @default.
- W2897961925 countsByYear W28979619252019 @default.
- W2897961925 countsByYear W28979619252022 @default.
- W2897961925 crossrefType "proceedings-article" @default.
- W2897961925 hasAuthorship W2897961925A5008919658 @default.
- W2897961925 hasAuthorship W2897961925A5014455930 @default.
- W2897961925 hasAuthorship W2897961925A5023719427 @default.
- W2897961925 hasAuthorship W2897961925A5030249903 @default.
- W2897961925 hasAuthorship W2897961925A5037504365 @default.
- W2897961925 hasAuthorship W2897961925A5056579154 @default.
- W2897961925 hasAuthorship W2897961925A5065134331 @default.
- W2897961925 hasConcept C11413529 @default.
- W2897961925 hasConcept C119599485 @default.
- W2897961925 hasConcept C124101348 @default.
- W2897961925 hasConcept C127413603 @default.
- W2897961925 hasConcept C154945302 @default.
- W2897961925 hasConcept C206658404 @default.
- W2897961925 hasConcept C41008148 @default.
- W2897961925 hasConcept C73555534 @default.
- W2897961925 hasConceptScore W2897961925C11413529 @default.
- W2897961925 hasConceptScore W2897961925C119599485 @default.
- W2897961925 hasConceptScore W2897961925C124101348 @default.
- W2897961925 hasConceptScore W2897961925C127413603 @default.
- W2897961925 hasConceptScore W2897961925C154945302 @default.
- W2897961925 hasConceptScore W2897961925C206658404 @default.
- W2897961925 hasConceptScore W2897961925C41008148 @default.
- W2897961925 hasConceptScore W2897961925C73555534 @default.
- W2897961925 hasLocation W28979619251 @default.
- W2897961925 hasOpenAccess W2897961925 @default.
- W2897961925 hasPrimaryLocation W28979619251 @default.
- W2897961925 hasRelatedWork W1555846838 @default.
- W2897961925 hasRelatedWork W1849651648 @default.
- W2897961925 hasRelatedWork W1999627569 @default.
- W2897961925 hasRelatedWork W2348097614 @default.
- W2897961925 hasRelatedWork W2380998760 @default.
- W2897961925 hasRelatedWork W2387405106 @default.
- W2897961925 hasRelatedWork W3042637915 @default.
- W2897961925 hasRelatedWork W3091875682 @default.
- W2897961925 hasRelatedWork W4292730930 @default.
- W2897961925 hasRelatedWork W763609066 @default.
- W2897961925 isParatext "false" @default.
- W2897961925 isRetracted "false" @default.
- W2897961925 magId "2897961925" @default.
- W2897961925 workType "article" @default.