Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897982132> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2897982132 endingPage "64502" @default.
- W2897982132 startingPage "64486" @default.
- W2897982132 abstract "With the rapid growth of online social media content, and the impact these have made on people’s behavior, many researchers have been interested in studying these media platforms. A major part of their work focused on sentiment analysis and opinion mining. These refer to the automatic identification of opinions of people toward specific topics by analyzing their posts and publications. Multi-class sentiment analysis, in particular, addresses the identification of the exact sentiment conveyed by the user rather than the overall sentiment polarity of his text message or post. That being the case, we introduce a task different from the conventional multi-class classification, which we run on a data set collected from Twitter. We refer to this task as “quantification.” By the term “quantification,” we mean the identification of all the existing sentiments within an online post (i.e., tweet) instead of attributing a single sentiment label to it. For this sake, we propose an approach that automatically attributes different scores to each sentiment in a tweet, and selects the sentiments with the highest scores which we judge as conveyed in the text. To reach this target, we added to our previously introduced tool SENTA the necessary components to run and perform such a task. Throughout this work, we present the added components; we study the feasibility of quantification, and propose an approach to perform it on a data set made of tweets for 11 different sentiment classes. The data set was manually labeled and the results of the automatic analysis were checked against the human annotation. Our experiments show the feasibility of this task and reach an F1 score equal to 45.9%." @default.
- W2897982132 created "2018-10-26" @default.
- W2897982132 creator A5016337773 @default.
- W2897982132 creator A5068994330 @default.
- W2897982132 date "2018-01-01" @default.
- W2897982132 modified "2023-09-23" @default.
- W2897982132 title "Multi-Class Sentiment Analysis in Twitter: What if Classification is Not the Answer" @default.
- W2897982132 cites W1551301124 @default.
- W2897982132 cites W1919365417 @default.
- W2897982132 cites W1972047492 @default.
- W2897982132 cites W2000497899 @default.
- W2897982132 cites W2002901997 @default.
- W2897982132 cites W2008101671 @default.
- W2897982132 cites W2039157612 @default.
- W2897982132 cites W2043870592 @default.
- W2897982132 cites W2046804949 @default.
- W2897982132 cites W2067977748 @default.
- W2897982132 cites W2076149295 @default.
- W2897982132 cites W2076199767 @default.
- W2897982132 cites W2076860056 @default.
- W2897982132 cites W2086643611 @default.
- W2897982132 cites W2133990480 @default.
- W2897982132 cites W2137981452 @default.
- W2897982132 cites W2147964944 @default.
- W2897982132 cites W2150907923 @default.
- W2897982132 cites W2151505373 @default.
- W2897982132 cites W2158243283 @default.
- W2897982132 cites W2291918964 @default.
- W2897982132 cites W2479668135 @default.
- W2897982132 cites W2582561810 @default.
- W2897982132 cites W2584429674 @default.
- W2897982132 cites W2619201468 @default.
- W2897982132 cites W2745850770 @default.
- W2897982132 cites W2749481027 @default.
- W2897982132 cites W2791720974 @default.
- W2897982132 cites W2911964244 @default.
- W2897982132 cites W3102444842 @default.
- W2897982132 cites W3122508723 @default.
- W2897982132 cites W4234121419 @default.
- W2897982132 cites W4235505822 @default.
- W2897982132 cites W1974371882 @default.
- W2897982132 doi "https://doi.org/10.1109/access.2018.2876674" @default.
- W2897982132 hasPublicationYear "2018" @default.
- W2897982132 type Work @default.
- W2897982132 sameAs 2897982132 @default.
- W2897982132 citedByCount "41" @default.
- W2897982132 countsByYear W28979821322019 @default.
- W2897982132 countsByYear W28979821322020 @default.
- W2897982132 countsByYear W28979821322021 @default.
- W2897982132 countsByYear W28979821322022 @default.
- W2897982132 countsByYear W28979821322023 @default.
- W2897982132 crossrefType "journal-article" @default.
- W2897982132 hasAuthorship W2897982132A5016337773 @default.
- W2897982132 hasAuthorship W2897982132A5068994330 @default.
- W2897982132 hasBestOaLocation W28979821321 @default.
- W2897982132 hasConcept C154945302 @default.
- W2897982132 hasConcept C204321447 @default.
- W2897982132 hasConcept C23123220 @default.
- W2897982132 hasConcept C2777212361 @default.
- W2897982132 hasConcept C41008148 @default.
- W2897982132 hasConcept C66402592 @default.
- W2897982132 hasConceptScore W2897982132C154945302 @default.
- W2897982132 hasConceptScore W2897982132C204321447 @default.
- W2897982132 hasConceptScore W2897982132C23123220 @default.
- W2897982132 hasConceptScore W2897982132C2777212361 @default.
- W2897982132 hasConceptScore W2897982132C41008148 @default.
- W2897982132 hasConceptScore W2897982132C66402592 @default.
- W2897982132 hasLocation W28979821321 @default.
- W2897982132 hasLocation W28979821322 @default.
- W2897982132 hasOpenAccess W2897982132 @default.
- W2897982132 hasPrimaryLocation W28979821321 @default.
- W2897982132 hasRelatedWork W2024691726 @default.
- W2897982132 hasRelatedWork W2086064646 @default.
- W2897982132 hasRelatedWork W2326619756 @default.
- W2897982132 hasRelatedWork W2357241418 @default.
- W2897982132 hasRelatedWork W2567514149 @default.
- W2897982132 hasRelatedWork W2789919619 @default.
- W2897982132 hasRelatedWork W2909085234 @default.
- W2897982132 hasRelatedWork W2944636446 @default.
- W2897982132 hasRelatedWork W3153487575 @default.
- W2897982132 hasRelatedWork W4290928156 @default.
- W2897982132 hasVolume "6" @default.
- W2897982132 isParatext "false" @default.
- W2897982132 isRetracted "false" @default.
- W2897982132 magId "2897982132" @default.
- W2897982132 workType "article" @default.