Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897985263> ?p ?o ?g. }
Showing items 1 to 50 of
50
with 100 items per page.
- W2897985263 abstract "The massive captured data from industrial sensors (time-series data) that could serve as relevant indicators for predictive maintenance of equipment, fault diagnosis, etc. is generating a problem related to the considerable costs associated with their storage. In this paper we present a system called I4TSRS1, available as a Web Application, that efficiently guides a data engineer in the task of obtaining industrial time-series data reduced representations that preserve their main characteristics. Dealing with those reduced representations, data storage and transmission costs can be decreased, without limiting the future exploitation of the data in different processes. The novel contribution of the I4TSRS is that it is an intelligent system that recommends the best techniques to achieve a reduced representation of time-series captured in industrial settings. Its core element is a machine learning model that combines time-series reduction techniques with extracted features from industrial time-series. We have built the model using several heterogeneous real industrial time-series." @default.
- W2897985263 created "2018-10-26" @default.
- W2897985263 creator A5011156157 @default.
- W2897985263 creator A5013396377 @default.
- W2897985263 creator A5036420472 @default.
- W2897985263 creator A5047912008 @default.
- W2897985263 creator A5071133705 @default.
- W2897985263 date "2018-10-17" @default.
- W2897985263 modified "2023-09-25" @default.
- W2897985263 title "I4TSRS" @default.
- W2897985263 cites W1894414046 @default.
- W2897985263 cites W1989037929 @default.
- W2897985263 cites W2029767187 @default.
- W2897985263 cites W2106595237 @default.
- W2897985263 cites W2317016330 @default.
- W2897985263 cites W2407961458 @default.
- W2897985263 cites W3100650712 @default.
- W2897985263 doi "https://doi.org/10.1145/3269206.3269213" @default.
- W2897985263 hasPublicationYear "2018" @default.
- W2897985263 type Work @default.
- W2897985263 sameAs 2897985263 @default.
- W2897985263 citedByCount "3" @default.
- W2897985263 countsByYear W28979852632018 @default.
- W2897985263 countsByYear W28979852632019 @default.
- W2897985263 countsByYear W28979852632021 @default.
- W2897985263 crossrefType "proceedings-article" @default.
- W2897985263 hasAuthorship W2897985263A5011156157 @default.
- W2897985263 hasAuthorship W2897985263A5013396377 @default.
- W2897985263 hasAuthorship W2897985263A5036420472 @default.
- W2897985263 hasAuthorship W2897985263A5047912008 @default.
- W2897985263 hasAuthorship W2897985263A5071133705 @default.
- W2897985263 hasConcept C41008148 @default.
- W2897985263 hasConceptScore W2897985263C41008148 @default.
- W2897985263 hasLocation W28979852631 @default.
- W2897985263 hasOpenAccess W2897985263 @default.
- W2897985263 hasPrimaryLocation W28979852631 @default.
- W2897985263 hasRelatedWork W2093578348 @default.
- W2897985263 hasRelatedWork W2130043461 @default.
- W2897985263 hasRelatedWork W2350741829 @default.
- W2897985263 hasRelatedWork W2358668433 @default.
- W2897985263 hasRelatedWork W2376932109 @default.
- W2897985263 hasRelatedWork W2382290278 @default.
- W2897985263 hasRelatedWork W2390279801 @default.
- W2897985263 hasRelatedWork W2748952813 @default.
- W2897985263 hasRelatedWork W2899084033 @default.
- W2897985263 hasRelatedWork W3004735627 @default.
- W2897985263 isParatext "false" @default.
- W2897985263 isRetracted "false" @default.
- W2897985263 magId "2897985263" @default.
- W2897985263 workType "article" @default.