Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898000334> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2898000334 abstract "Supervised deep learning methods such as fully convolutional neural networks have been very effective at medical image segmentation tasks. These approaches are limited, however, by the need for large amounts of labeled training data. The time and labor required for creating human-labeled ground truth segmentations for training examples is often prohibitive. This paper presents a method for the generation of synthetic examples using cyclic generative adversarial neural networks. The paper further shows that a fully convolutional network trained on a dataset of several synthetic examples and a single manually-crafted ground truth segmentation can approach the accuracy of an equivalent network trained on twenty manually segmented examples." @default.
- W2898000334 created "2018-10-26" @default.
- W2898000334 creator A5004731015 @default.
- W2898000334 creator A5026211955 @default.
- W2898000334 creator A5083553196 @default.
- W2898000334 date "2018-01-01" @default.
- W2898000334 modified "2023-09-27" @default.
- W2898000334 title "Deep Learning Retinal Vessel Segmentation from a Single Annotated Example: An Application of Cyclic Generative Adversarial Neural Networks" @default.
- W2898000334 cites W2004695321 @default.
- W2898000334 cites W2122644916 @default.
- W2898000334 cites W2150769593 @default.
- W2898000334 cites W2746791238 @default.
- W2898000334 cites W2919115771 @default.
- W2898000334 doi "https://doi.org/10.1007/978-3-030-01364-6_10" @default.
- W2898000334 hasPublicationYear "2018" @default.
- W2898000334 type Work @default.
- W2898000334 sameAs 2898000334 @default.
- W2898000334 citedByCount "2" @default.
- W2898000334 countsByYear W28980003342019 @default.
- W2898000334 countsByYear W28980003342020 @default.
- W2898000334 crossrefType "book-chapter" @default.
- W2898000334 hasAuthorship W2898000334A5004731015 @default.
- W2898000334 hasAuthorship W2898000334A5026211955 @default.
- W2898000334 hasAuthorship W2898000334A5083553196 @default.
- W2898000334 hasConcept C108583219 @default.
- W2898000334 hasConcept C119857082 @default.
- W2898000334 hasConcept C124504099 @default.
- W2898000334 hasConcept C146849305 @default.
- W2898000334 hasConcept C153180895 @default.
- W2898000334 hasConcept C154945302 @default.
- W2898000334 hasConcept C2988773926 @default.
- W2898000334 hasConcept C37736160 @default.
- W2898000334 hasConcept C39890363 @default.
- W2898000334 hasConcept C41008148 @default.
- W2898000334 hasConcept C50644808 @default.
- W2898000334 hasConcept C81363708 @default.
- W2898000334 hasConcept C89600930 @default.
- W2898000334 hasConceptScore W2898000334C108583219 @default.
- W2898000334 hasConceptScore W2898000334C119857082 @default.
- W2898000334 hasConceptScore W2898000334C124504099 @default.
- W2898000334 hasConceptScore W2898000334C146849305 @default.
- W2898000334 hasConceptScore W2898000334C153180895 @default.
- W2898000334 hasConceptScore W2898000334C154945302 @default.
- W2898000334 hasConceptScore W2898000334C2988773926 @default.
- W2898000334 hasConceptScore W2898000334C37736160 @default.
- W2898000334 hasConceptScore W2898000334C39890363 @default.
- W2898000334 hasConceptScore W2898000334C41008148 @default.
- W2898000334 hasConceptScore W2898000334C50644808 @default.
- W2898000334 hasConceptScore W2898000334C81363708 @default.
- W2898000334 hasConceptScore W2898000334C89600930 @default.
- W2898000334 hasLocation W28980003341 @default.
- W2898000334 hasOpenAccess W2898000334 @default.
- W2898000334 hasPrimaryLocation W28980003341 @default.
- W2898000334 hasRelatedWork W2497983802 @default.
- W2898000334 hasRelatedWork W2736462652 @default.
- W2898000334 hasRelatedWork W2805899143 @default.
- W2898000334 hasRelatedWork W2891791130 @default.
- W2898000334 hasRelatedWork W2908698261 @default.
- W2898000334 hasRelatedWork W2909611106 @default.
- W2898000334 hasRelatedWork W2939571759 @default.
- W2898000334 hasRelatedWork W2945684598 @default.
- W2898000334 hasRelatedWork W2951329195 @default.
- W2898000334 hasRelatedWork W2959397617 @default.
- W2898000334 hasRelatedWork W2972014841 @default.
- W2898000334 hasRelatedWork W2979101979 @default.
- W2898000334 hasRelatedWork W3020979722 @default.
- W2898000334 hasRelatedWork W3027136978 @default.
- W2898000334 hasRelatedWork W3091601247 @default.
- W2898000334 hasRelatedWork W3143365910 @default.
- W2898000334 hasRelatedWork W3200028852 @default.
- W2898000334 hasRelatedWork W3202658272 @default.
- W2898000334 hasRelatedWork W3019694652 @default.
- W2898000334 hasRelatedWork W3066236189 @default.
- W2898000334 isParatext "false" @default.
- W2898000334 isRetracted "false" @default.
- W2898000334 magId "2898000334" @default.
- W2898000334 workType "book-chapter" @default.