Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898023708> ?p ?o ?g. }
- W2898023708 endingPage "632" @default.
- W2898023708 startingPage "580" @default.
- W2898023708 abstract "We have performed a particle-resolved direct numerical simulation of a turbulent channel flow past a moving dilute array of spherical particles. The flow shares important features with dilute vertical gas solid flow at high Stokes number, such as significant attenuation of the turbulence kinetic energy (TKE) at low particle volume fraction. The flow has been simulated by means of an overset grid method, using spherical grids around each particle overset on a background non-uniform Cartesian grid. The main focus of the present paper is on the TKE budget, which is analysed both in the fixed channel frame of reference and in the moving particle frame of reference. The overall (domain-integrated) TKE and turbulence production due to mean shear are reduced compared to unladen flow. In the fixed frame, the interfacial term, which represents production due to relative (slip) velocity, accounts for approximately 40 % of the total turbulence production in the channel. As a consequence, the total turbulence production and the overall turbulence dissipation rate remain approximately the same as in the unladen flow. However, a comparison with laminar flow past the same particle configuration reveals that significant parts of various fixed-frame statistics are due to non-turbulent structures, spatial variations that are steady in the moving particle frame. In order to obtain a clearer picture of the modification of the true turbulence and in order to reveal the rich three-dimensional (3-D) statistical structure of turbulence interacting with particles, time averaging in the moving frame of reference of the particle is used to extract the fluctuations entirely due to true turbulence. In the moving frame, the turbulence production is positive near the sides and in the wake, but negative in a region near the front of the particle. The turbulence dissipation rate and even more the dissipation rate of the 3-D mean flow attain very large values on a large part of the particle surface, up to approximately 400 and 4000 times the local turbulence dissipation rate of the unladen flow, respectively. Very close to the particle, viscous diffusion is the dominant transport term, but somewhat further away, in particular near the front and sides of the particle, pressure diffusion and also convection provide large and positive transport contributions to the moving-frame budget. A radial analysis shows that the regions around the particles draw energy from the regions further away via the surprising dominance of the pressure diffusion flux over a large range of radii. Spectra show that (very) far away from the particles all scales of the (true) turbulence are reduced. Near the particles enhancement of small scale turbulence is observed, for the streamwise component of the velocity fluctuation more than for the other components. The most important reason for turbulence reduction and anisotropy increase appears to be particle-induced non-uniformity of the mean driving force of the flow." @default.
- W2898023708 created "2018-10-26" @default.
- W2898023708 creator A5039594841 @default.
- W2898023708 creator A5046362437 @default.
- W2898023708 date "2018-10-12" @default.
- W2898023708 modified "2023-10-16" @default.
- W2898023708 title "Turbulent channel flow past a moving array of spheres" @default.
- W2898023708 cites W1777750102 @default.
- W2898023708 cites W1965405112 @default.
- W2898023708 cites W1970810544 @default.
- W2898023708 cites W1982404194 @default.
- W2898023708 cites W1990658445 @default.
- W2898023708 cites W1995231460 @default.
- W2898023708 cites W2007543823 @default.
- W2898023708 cites W2029520499 @default.
- W2898023708 cites W2034828276 @default.
- W2898023708 cites W2056673161 @default.
- W2898023708 cites W2056848769 @default.
- W2898023708 cites W2063902879 @default.
- W2898023708 cites W2073107580 @default.
- W2898023708 cites W2074470108 @default.
- W2898023708 cites W2075538324 @default.
- W2898023708 cites W2079019266 @default.
- W2898023708 cites W2079730339 @default.
- W2898023708 cites W2085633990 @default.
- W2898023708 cites W2090852364 @default.
- W2898023708 cites W2094443124 @default.
- W2898023708 cites W2103080979 @default.
- W2898023708 cites W2104825805 @default.
- W2898023708 cites W2111147998 @default.
- W2898023708 cites W2114822365 @default.
- W2898023708 cites W2115642269 @default.
- W2898023708 cites W2129187730 @default.
- W2898023708 cites W2130275427 @default.
- W2898023708 cites W2143251065 @default.
- W2898023708 cites W2144350150 @default.
- W2898023708 cites W2151135230 @default.
- W2898023708 cites W2153555417 @default.
- W2898023708 cites W2160729968 @default.
- W2898023708 cites W2165008991 @default.
- W2898023708 cites W2169373764 @default.
- W2898023708 cites W2191275783 @default.
- W2898023708 cites W2236047554 @default.
- W2898023708 cites W2320681552 @default.
- W2898023708 cites W2330753191 @default.
- W2898023708 cites W2344161932 @default.
- W2898023708 cites W2494328110 @default.
- W2898023708 cites W2517643623 @default.
- W2898023708 cites W2520894338 @default.
- W2898023708 cites W2556291925 @default.
- W2898023708 cites W2562248738 @default.
- W2898023708 cites W2587282758 @default.
- W2898023708 cites W2604804794 @default.
- W2898023708 cites W2607186398 @default.
- W2898023708 cites W2688913147 @default.
- W2898023708 cites W2745418435 @default.
- W2898023708 cites W2782550998 @default.
- W2898023708 cites W2962707114 @default.
- W2898023708 cites W3104218386 @default.
- W2898023708 cites W4205317898 @default.
- W2898023708 cites W754545506 @default.
- W2898023708 doi "https://doi.org/10.1017/jfm.2018.715" @default.
- W2898023708 hasPublicationYear "2018" @default.
- W2898023708 type Work @default.
- W2898023708 sameAs 2898023708 @default.
- W2898023708 citedByCount "22" @default.
- W2898023708 countsByYear W28980237082019 @default.
- W2898023708 countsByYear W28980237082020 @default.
- W2898023708 countsByYear W28980237082021 @default.
- W2898023708 countsByYear W28980237082022 @default.
- W2898023708 countsByYear W28980237082023 @default.
- W2898023708 crossrefType "journal-article" @default.
- W2898023708 hasAuthorship W2898023708A5039594841 @default.
- W2898023708 hasAuthorship W2898023708A5046362437 @default.
- W2898023708 hasBestOaLocation W28980237082 @default.
- W2898023708 hasConcept C111368507 @default.
- W2898023708 hasConcept C121332964 @default.
- W2898023708 hasConcept C127313418 @default.
- W2898023708 hasConcept C150711758 @default.
- W2898023708 hasConcept C15476950 @default.
- W2898023708 hasConcept C180925781 @default.
- W2898023708 hasConcept C182748727 @default.
- W2898023708 hasConcept C18533594 @default.
- W2898023708 hasConcept C189223162 @default.
- W2898023708 hasConcept C196558001 @default.
- W2898023708 hasConcept C24692054 @default.
- W2898023708 hasConcept C2778517922 @default.
- W2898023708 hasConcept C57879066 @default.
- W2898023708 hasConcept C76563973 @default.
- W2898023708 hasConceptScore W2898023708C111368507 @default.
- W2898023708 hasConceptScore W2898023708C121332964 @default.
- W2898023708 hasConceptScore W2898023708C127313418 @default.
- W2898023708 hasConceptScore W2898023708C150711758 @default.
- W2898023708 hasConceptScore W2898023708C15476950 @default.
- W2898023708 hasConceptScore W2898023708C180925781 @default.
- W2898023708 hasConceptScore W2898023708C182748727 @default.
- W2898023708 hasConceptScore W2898023708C18533594 @default.
- W2898023708 hasConceptScore W2898023708C189223162 @default.