Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898033805> ?p ?o ?g. }
- W2898033805 abstract "The potent greenhouse gas methane presents a widely accessible resource, being the primary component in natural gas as well as in bio-gas from anaerobic digesters. Given its relatively low heating-value and several issues concerning its storage and transportation, methane upgrading to liquid fuels is of particular interest. Microbial methane conversion/utilization and upgrading is gaining increasing interest due to its high conversion efficiency. In this study we computationally compare aerobic and anaerobic microbial pathways for CH4 oxidation and discuss theoretically achievable biomass yields as well as the possibility for building synthetic biological production platforms for liquid fuels. Specifically, the presented in-silico work investigates the potential of microbial methane upgrading in a metabolic network analysis by means of elementary flux modes. Aerobic fixation of methane via conversion of methane to methanol by a methane monooxygenase (MMO) and different subsequent formaldehyde assimilation pathways (Serine-cycle, RuMP, XMP/DHA-pathway) is compared with anaerobic pathways for oxidation of methane (AOM) by means of reverse-methanogenesis or via a presumed glycyl-radical enzyme, which uses fumarate for activation of methane. The different pathways for aerobic and anaerobic methane oxidation are compared in different central carbon-metabolism envelopes in order to identify highest achievable carbon yields. The capability of efficient CO2 fixation, as well as energy preservation in form of reducing equivalents is identified as crucial to enable high yields, which ranged from 22% to 100%. The potential of the different microbes to grow on these gas streams is assessed by means of the maximum achievable biomass yield and the CO2/CH4 uptake ratio. CO2 co-utilisation, by transferring reducing power between the two co-substrates, is highest, when combining reverse-methanogenesis with the Wood-Ljungdahl pathway, effectively replacing the need for H2 with CH4. Further, the possibility to upgrade methane into liquid (drop-in) bio-fuels is investigated. Established routes to methanol, ethanol, C4-alcoholes and farnesene are evaluated in the most promising substrate-pathway / organism combinations. Stoichiometric, thermodynamic and kinetic limitations are assessed and recommendations regarding potential industrial feasibility are given. The results presented here should guide future research efforts in search for feasible ways of (co)utilizing novel carbon substrates for sustainable production of fuels and chemicals." @default.
- W2898033805 created "2018-10-26" @default.
- W2898033805 creator A5043972948 @default.
- W2898033805 creator A5058345099 @default.
- W2898033805 date "2018-10-15" @default.
- W2898033805 modified "2023-09-26" @default.
- W2898033805 title "Metabolic Network Analysis of Microbial Methane Utilization for Biomass Formation and Upgrading to Bio-Fuels" @default.
- W2898033805 cites W1507882943 @default.
- W2898033805 cites W1612517152 @default.
- W2898033805 cites W1974375332 @default.
- W2898033805 cites W1978119727 @default.
- W2898033805 cites W1980731880 @default.
- W2898033805 cites W1988409555 @default.
- W2898033805 cites W1988525433 @default.
- W2898033805 cites W1992529184 @default.
- W2898033805 cites W2012872383 @default.
- W2898033805 cites W2022374283 @default.
- W2898033805 cites W2025479583 @default.
- W2898033805 cites W2034780913 @default.
- W2898033805 cites W2034806322 @default.
- W2898033805 cites W2037551633 @default.
- W2898033805 cites W2040173318 @default.
- W2898033805 cites W2051336569 @default.
- W2898033805 cites W2054919561 @default.
- W2898033805 cites W2056257661 @default.
- W2898033805 cites W2060476169 @default.
- W2898033805 cites W2065399928 @default.
- W2898033805 cites W2070868107 @default.
- W2898033805 cites W2072543338 @default.
- W2898033805 cites W2072823483 @default.
- W2898033805 cites W2075512386 @default.
- W2898033805 cites W2079114878 @default.
- W2898033805 cites W2079838620 @default.
- W2898033805 cites W2084333783 @default.
- W2898033805 cites W2088466887 @default.
- W2898033805 cites W2098189220 @default.
- W2898033805 cites W2110256992 @default.
- W2898033805 cites W2110355460 @default.
- W2898033805 cites W2112906241 @default.
- W2898033805 cites W2116976883 @default.
- W2898033805 cites W2129634655 @default.
- W2898033805 cites W2147015873 @default.
- W2898033805 cites W2152971512 @default.
- W2898033805 cites W2157192803 @default.
- W2898033805 cites W2158365991 @default.
- W2898033805 cites W2165215205 @default.
- W2898033805 cites W2165612309 @default.
- W2898033805 cites W2166470414 @default.
- W2898033805 cites W2166536235 @default.
- W2898033805 cites W2169659184 @default.
- W2898033805 cites W2175095214 @default.
- W2898033805 cites W2239706731 @default.
- W2898033805 cites W2284040942 @default.
- W2898033805 cites W2307584008 @default.
- W2898033805 cites W2398795927 @default.
- W2898033805 cites W2412234405 @default.
- W2898033805 cites W2534303219 @default.
- W2898033805 cites W2535859909 @default.
- W2898033805 cites W2540731211 @default.
- W2898033805 cites W2550633671 @default.
- W2898033805 cites W2553448916 @default.
- W2898033805 cites W2557654479 @default.
- W2898033805 cites W2559588208 @default.
- W2898033805 cites W2623209063 @default.
- W2898033805 cites W2701859152 @default.
- W2898033805 cites W2739217682 @default.
- W2898033805 cites W2772677452 @default.
- W2898033805 cites W2772716231 @default.
- W2898033805 cites W2791289087 @default.
- W2898033805 cites W2793430004 @default.
- W2898033805 cites W2795466305 @default.
- W2898033805 cites W2797728581 @default.
- W2898033805 cites W2800229091 @default.
- W2898033805 cites W2801097103 @default.
- W2898033805 cites W4230770774 @default.
- W2898033805 cites W4294216483 @default.
- W2898033805 doi "https://doi.org/10.3389/fenrg.2018.00106" @default.
- W2898033805 hasPublicationYear "2018" @default.
- W2898033805 type Work @default.
- W2898033805 sameAs 2898033805 @default.
- W2898033805 citedByCount "8" @default.
- W2898033805 countsByYear W28980338052020 @default.
- W2898033805 countsByYear W28980338052021 @default.
- W2898033805 countsByYear W28980338052023 @default.
- W2898033805 crossrefType "journal-article" @default.
- W2898033805 hasAuthorship W2898033805A5043972948 @default.
- W2898033805 hasAuthorship W2898033805A5058345099 @default.
- W2898033805 hasBestOaLocation W28980338051 @default.
- W2898033805 hasConcept C104577883 @default.
- W2898033805 hasConcept C107872376 @default.
- W2898033805 hasConcept C115540264 @default.
- W2898033805 hasConcept C127413603 @default.
- W2898033805 hasConcept C178790620 @default.
- W2898033805 hasConcept C185592680 @default.
- W2898033805 hasConcept C18903297 @default.
- W2898033805 hasConcept C199873434 @default.
- W2898033805 hasConcept C2777671786 @default.
- W2898033805 hasConcept C2778589620 @default.
- W2898033805 hasConcept C39432304 @default.
- W2898033805 hasConcept C47737302 @default.