Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898035736> ?p ?o ?g. }
- W2898035736 endingPage "3174" @default.
- W2898035736 startingPage "3133" @default.
- W2898035736 abstract "This paper presents a comprehensive literature review on applications of deep reinforcement learning (DRL) in communications and networking. Modern networks, e.g., Internet of Things (IoT) and unmanned aerial vehicle (UAV) networks, become more decentralized and autonomous. In such networks, network entities need to make decisions locally to maximize the network performance under uncertainty of network environment. Reinforcement learning has been efficiently used to enable the network entities to obtain the optimal policy including, e.g., decisions or actions, given their states when the state and action spaces are small. However, in complex and large-scale networks, the state and action spaces are usually large, and the reinforcement learning may not be able to find the optimal policy in reasonable time. Therefore, DRL, a combination of reinforcement learning with deep learning, has been developed to overcome the shortcomings. In this survey, we first give a tutorial of DRL from fundamental concepts to advanced models. Then, we review DRL approaches proposed to address emerging issues in communications and networking. The issues include dynamic network access, data rate control, wireless caching, data offloading, network security, and connectivity preservation which are all important to next generation networks, such as 5G and beyond. Furthermore, we present applications of DRL for traffic routing, resource sharing, and data collection. Finally, we highlight important challenges, open issues, and future research directions of applying DRL." @default.
- W2898035736 created "2018-10-26" @default.
- W2898035736 creator A5007832415 @default.
- W2898035736 creator A5007992576 @default.
- W2898035736 creator A5022649488 @default.
- W2898035736 creator A5042460024 @default.
- W2898035736 creator A5043745622 @default.
- W2898035736 creator A5047071006 @default.
- W2898035736 creator A5053242519 @default.
- W2898035736 date "2019-01-01" @default.
- W2898035736 modified "2023-10-16" @default.
- W2898035736 title "Applications of Deep Reinforcement Learning in Communications and Networking: A Survey" @default.
- W2898035736 cites W1582740727 @default.
- W2898035736 cites W1589596320 @default.
- W2898035736 cites W1605874004 @default.
- W2898035736 cites W1809034209 @default.
- W2898035736 cites W1904799423 @default.
- W2898035736 cites W1923594657 @default.
- W2898035736 cites W1947481528 @default.
- W2898035736 cites W1948092788 @default.
- W2898035736 cites W1971402834 @default.
- W2898035736 cites W1972191802 @default.
- W2898035736 cites W1973942241 @default.
- W2898035736 cites W1976294375 @default.
- W2898035736 cites W1978421850 @default.
- W2898035736 cites W1982790752 @default.
- W2898035736 cites W1985229168 @default.
- W2898035736 cites W1988975763 @default.
- W2898035736 cites W1996673765 @default.
- W2898035736 cites W1997831264 @default.
- W2898035736 cites W2022359415 @default.
- W2898035736 cites W2036808929 @default.
- W2898035736 cites W2044846595 @default.
- W2898035736 cites W2046658845 @default.
- W2898035736 cites W2055165550 @default.
- W2898035736 cites W2068654401 @default.
- W2898035736 cites W2075816638 @default.
- W2898035736 cites W2083868427 @default.
- W2898035736 cites W2089194229 @default.
- W2898035736 cites W2094039233 @default.
- W2898035736 cites W2102511166 @default.
- W2898035736 cites W2114936722 @default.
- W2898035736 cites W2120327309 @default.
- W2898035736 cites W2123651102 @default.
- W2898035736 cites W2123850191 @default.
- W2898035736 cites W2131799137 @default.
- W2898035736 cites W2145339207 @default.
- W2898035736 cites W2155482699 @default.
- W2898035736 cites W2158510188 @default.
- W2898035736 cites W2164179872 @default.
- W2898035736 cites W2171671264 @default.
- W2898035736 cites W2283268383 @default.
- W2898035736 cites W2309512289 @default.
- W2898035736 cites W2371946849 @default.
- W2898035736 cites W2473283431 @default.
- W2898035736 cites W2528788999 @default.
- W2898035736 cites W2546571074 @default.
- W2898035736 cites W2552120320 @default.
- W2898035736 cites W2568817620 @default.
- W2898035736 cites W2575705757 @default.
- W2898035736 cites W2588283865 @default.
- W2898035736 cites W2589615107 @default.
- W2898035736 cites W2610968021 @default.
- W2898035736 cites W2611484353 @default.
- W2898035736 cites W2612074600 @default.
- W2898035736 cites W2612336410 @default.
- W2898035736 cites W2614329785 @default.
- W2898035736 cites W2617931713 @default.
- W2898035736 cites W2623902153 @default.
- W2898035736 cites W2734506266 @default.
- W2898035736 cites W2735746704 @default.
- W2898035736 cites W2741401130 @default.
- W2898035736 cites W2742128636 @default.
- W2898035736 cites W2742477283 @default.
- W2898035736 cites W2744628735 @default.
- W2898035736 cites W2744714095 @default.
- W2898035736 cites W2745574548 @default.
- W2898035736 cites W2756144809 @default.
- W2898035736 cites W2759880155 @default.
- W2898035736 cites W2760327456 @default.
- W2898035736 cites W2761694337 @default.
- W2898035736 cites W2761862361 @default.
- W2898035736 cites W2765492968 @default.
- W2898035736 cites W2768597617 @default.
- W2898035736 cites W2769378718 @default.
- W2898035736 cites W2772526503 @default.
- W2898035736 cites W2773423866 @default.
- W2898035736 cites W2774386693 @default.
- W2898035736 cites W2776055286 @default.
- W2898035736 cites W2782363571 @default.
- W2898035736 cites W2782752457 @default.
- W2898035736 cites W2782999659 @default.
- W2898035736 cites W2783130023 @default.
- W2898035736 cites W2783430957 @default.
- W2898035736 cites W2783558323 @default.
- W2898035736 cites W2783729004 @default.
- W2898035736 cites W2786686192 @default.
- W2898035736 cites W2786839822 @default.