Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898044604> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2898044604 endingPage "552" @default.
- W2898044604 startingPage "539" @default.
- W2898044604 abstract "Automated segmentation of tumor epithelial tissue from histological images is a fundamental aspiration of digital pathology to improve biomarker assessment and tissue diagnosis. Accurate tumour segmentation is an important step in many automated digital image analysis applications to be used in clinical practice. In particular, segmentation of tumour, non-tumour epithelium and stromal tissue compartments on immunohistochemistry images presents a challenge. Many artifacts, such as staining and/or illumination variations, can confound image analysis. In this paper, we propose a cascade-learning approach which can diminish the impact of these artifacts. It consists of (a) a set of novel invariant features that encodes meaningful information about the appearance and shape of the region of interest and (b) a novel level set formulation where contour evolution is driven by a probabilistic model of the appearance of the region (based on fuzzy c-means). The merit of our approach is that it exploits both appearance and shape information and combines them in the tissue classification framework. We evaluate the performance of our approach on the segmentation of tumour epithelium in colorectal cancer. The experimental results show that our approach is robust to staining differences, additive noise, intensity inhomogeneities, and can cope with a limited number of training samples, when compared to the state-of-the-art tumour epithelial segmentation methods." @default.
- W2898044604 created "2018-10-26" @default.
- W2898044604 creator A5012776735 @default.
- W2898044604 creator A5017889715 @default.
- W2898044604 creator A5050974875 @default.
- W2898044604 creator A5063799542 @default.
- W2898044604 creator A5071335046 @default.
- W2898044604 creator A5084134447 @default.
- W2898044604 date "2019-03-01" @default.
- W2898044604 modified "2023-09-27" @default.
- W2898044604 title "A cascade-learning approach for automated segmentation of tumour epithelium in colorectal cancer" @default.
- W2898044604 cites W1859257957 @default.
- W2898044604 cites W1973305754 @default.
- W2898044604 cites W1979817911 @default.
- W2898044604 cites W1990517717 @default.
- W2898044604 cites W1992570073 @default.
- W2898044604 cites W2031681802 @default.
- W2898044604 cites W2034770923 @default.
- W2898044604 cites W2034841618 @default.
- W2898044604 cites W2041538370 @default.
- W2898044604 cites W2046224179 @default.
- W2898044604 cites W2046781710 @default.
- W2898044604 cites W2069330528 @default.
- W2898044604 cites W2070113537 @default.
- W2898044604 cites W2077696460 @default.
- W2898044604 cites W2080971197 @default.
- W2898044604 cites W2087222240 @default.
- W2898044604 cites W2103243046 @default.
- W2898044604 cites W2116040950 @default.
- W2898044604 cites W2117299321 @default.
- W2898044604 cites W2119301589 @default.
- W2898044604 cites W2124171640 @default.
- W2898044604 cites W2141967861 @default.
- W2898044604 cites W2167354555 @default.
- W2898044604 cites W2168593098 @default.
- W2898044604 cites W2299919100 @default.
- W2898044604 cites W2312404985 @default.
- W2898044604 cites W2342720222 @default.
- W2898044604 cites W2435090885 @default.
- W2898044604 cites W2470965540 @default.
- W2898044604 cites W2520107416 @default.
- W2898044604 cites W3211330693 @default.
- W2898044604 doi "https://doi.org/10.1016/j.eswa.2018.10.030" @default.
- W2898044604 hasPublicationYear "2019" @default.
- W2898044604 type Work @default.
- W2898044604 sameAs 2898044604 @default.
- W2898044604 citedByCount "20" @default.
- W2898044604 countsByYear W28980446042019 @default.
- W2898044604 countsByYear W28980446042020 @default.
- W2898044604 countsByYear W28980446042021 @default.
- W2898044604 countsByYear W28980446042022 @default.
- W2898044604 crossrefType "journal-article" @default.
- W2898044604 hasAuthorship W2898044604A5012776735 @default.
- W2898044604 hasAuthorship W2898044604A5017889715 @default.
- W2898044604 hasAuthorship W2898044604A5050974875 @default.
- W2898044604 hasAuthorship W2898044604A5063799542 @default.
- W2898044604 hasAuthorship W2898044604A5071335046 @default.
- W2898044604 hasAuthorship W2898044604A5084134447 @default.
- W2898044604 hasConcept C124504099 @default.
- W2898044604 hasConcept C153180895 @default.
- W2898044604 hasConcept C154945302 @default.
- W2898044604 hasConcept C2777522853 @default.
- W2898044604 hasConcept C31972630 @default.
- W2898044604 hasConcept C41008148 @default.
- W2898044604 hasConcept C89600930 @default.
- W2898044604 hasConceptScore W2898044604C124504099 @default.
- W2898044604 hasConceptScore W2898044604C153180895 @default.
- W2898044604 hasConceptScore W2898044604C154945302 @default.
- W2898044604 hasConceptScore W2898044604C2777522853 @default.
- W2898044604 hasConceptScore W2898044604C31972630 @default.
- W2898044604 hasConceptScore W2898044604C41008148 @default.
- W2898044604 hasConceptScore W2898044604C89600930 @default.
- W2898044604 hasLocation W28980446041 @default.
- W2898044604 hasOpenAccess W2898044604 @default.
- W2898044604 hasPrimaryLocation W28980446041 @default.
- W2898044604 hasRelatedWork W1507266234 @default.
- W2898044604 hasRelatedWork W1669643531 @default.
- W2898044604 hasRelatedWork W2110230079 @default.
- W2898044604 hasRelatedWork W2117664411 @default.
- W2898044604 hasRelatedWork W2117933325 @default.
- W2898044604 hasRelatedWork W2122581818 @default.
- W2898044604 hasRelatedWork W2159066190 @default.
- W2898044604 hasRelatedWork W2549936415 @default.
- W2898044604 hasRelatedWork W2739874619 @default.
- W2898044604 hasRelatedWork W1967061043 @default.
- W2898044604 hasVolume "118" @default.
- W2898044604 isParatext "false" @default.
- W2898044604 isRetracted "false" @default.
- W2898044604 magId "2898044604" @default.
- W2898044604 workType "article" @default.