Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898047178> ?p ?o ?g. }
- W2898047178 abstract "Identification of drug-target interactions is a crucial process in drug discovery. In this chapter, we present protocols for recent advancements in machine learning methods for predicting drug-target interactions from heterogeneous biological data in a chemogenomic framework, in which prediction is based on the chemical structure data of drug candidate compounds and translated genomic sequence data of target candidate proteins. Most existing methods are based on either linear modeling or kernel modeling. To illustrate linear modeling, we introduce sparsity-induced binary classifiers and sparse canonical correlation analysis. To illustrate kernel modeling, we introduce pairwise kernel-based support vector machines and kernel-based distance learning. Workflows for using these techniques are presented. We also discuss the characteristics of each method and suggest some directions for future research." @default.
- W2898047178 created "2018-10-26" @default.
- W2898047178 creator A5035394108 @default.
- W2898047178 date "2018-01-01" @default.
- W2898047178 modified "2023-09-23" @default.
- W2898047178 title "Linear and Kernel Model Construction Methods for Predicting Drug–Target Interactions in a Chemogenomic Framework" @default.
- W2898047178 cites W1510073064 @default.
- W2898047178 cites W1540649941 @default.
- W2898047178 cites W1542652324 @default.
- W2898047178 cites W1544009106 @default.
- W2898047178 cites W1972156862 @default.
- W2898047178 cites W1979537657 @default.
- W2898047178 cites W1988037271 @default.
- W2898047178 cites W1990878163 @default.
- W2898047178 cites W1997453506 @default.
- W2898047178 cites W2007965730 @default.
- W2898047178 cites W2009313526 @default.
- W2898047178 cites W2012438480 @default.
- W2898047178 cites W2030342799 @default.
- W2898047178 cites W2035753075 @default.
- W2898047178 cites W2053080554 @default.
- W2898047178 cites W2087064593 @default.
- W2898047178 cites W2098889731 @default.
- W2898047178 cites W2100672820 @default.
- W2898047178 cites W2104950117 @default.
- W2898047178 cites W2107081909 @default.
- W2898047178 cites W2108069034 @default.
- W2898047178 cites W2114779636 @default.
- W2898047178 cites W2116296021 @default.
- W2898047178 cites W2121950477 @default.
- W2898047178 cites W2127553917 @default.
- W2898047178 cites W2127570942 @default.
- W2898047178 cites W2135209350 @default.
- W2898047178 cites W2135835957 @default.
- W2898047178 cites W2138512826 @default.
- W2898047178 cites W2139516171 @default.
- W2898047178 cites W2139736926 @default.
- W2898047178 cites W2146382443 @default.
- W2898047178 cites W2153838454 @default.
- W2898047178 cites W2154896031 @default.
- W2898047178 cites W2165674132 @default.
- W2898047178 cites W2166410137 @default.
- W2898047178 cites W2200017991 @default.
- W2898047178 cites W4210323379 @default.
- W2898047178 doi "https://doi.org/10.1007/978-1-4939-8639-2_12" @default.
- W2898047178 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30334213" @default.
- W2898047178 hasPublicationYear "2018" @default.
- W2898047178 type Work @default.
- W2898047178 sameAs 2898047178 @default.
- W2898047178 citedByCount "3" @default.
- W2898047178 countsByYear W28980471782019 @default.
- W2898047178 countsByYear W28980471782020 @default.
- W2898047178 crossrefType "book-chapter" @default.
- W2898047178 hasAuthorship W2898047178A5035394108 @default.
- W2898047178 hasConcept C114614502 @default.
- W2898047178 hasConcept C116834253 @default.
- W2898047178 hasConcept C119857082 @default.
- W2898047178 hasConcept C122280245 @default.
- W2898047178 hasConcept C12267149 @default.
- W2898047178 hasConcept C124101348 @default.
- W2898047178 hasConcept C154945302 @default.
- W2898047178 hasConcept C184898388 @default.
- W2898047178 hasConcept C2776879701 @default.
- W2898047178 hasConcept C33923547 @default.
- W2898047178 hasConcept C41008148 @default.
- W2898047178 hasConcept C59822182 @default.
- W2898047178 hasConcept C60644358 @default.
- W2898047178 hasConcept C74187038 @default.
- W2898047178 hasConcept C74193536 @default.
- W2898047178 hasConcept C86803240 @default.
- W2898047178 hasConceptScore W2898047178C114614502 @default.
- W2898047178 hasConceptScore W2898047178C116834253 @default.
- W2898047178 hasConceptScore W2898047178C119857082 @default.
- W2898047178 hasConceptScore W2898047178C122280245 @default.
- W2898047178 hasConceptScore W2898047178C12267149 @default.
- W2898047178 hasConceptScore W2898047178C124101348 @default.
- W2898047178 hasConceptScore W2898047178C154945302 @default.
- W2898047178 hasConceptScore W2898047178C184898388 @default.
- W2898047178 hasConceptScore W2898047178C2776879701 @default.
- W2898047178 hasConceptScore W2898047178C33923547 @default.
- W2898047178 hasConceptScore W2898047178C41008148 @default.
- W2898047178 hasConceptScore W2898047178C59822182 @default.
- W2898047178 hasConceptScore W2898047178C60644358 @default.
- W2898047178 hasConceptScore W2898047178C74187038 @default.
- W2898047178 hasConceptScore W2898047178C74193536 @default.
- W2898047178 hasConceptScore W2898047178C86803240 @default.
- W2898047178 hasLocation W28980471781 @default.
- W2898047178 hasLocation W28980471782 @default.
- W2898047178 hasOpenAccess W2898047178 @default.
- W2898047178 hasPrimaryLocation W28980471781 @default.
- W2898047178 hasRelatedWork W1485733862 @default.
- W2898047178 hasRelatedWork W1985447350 @default.
- W2898047178 hasRelatedWork W2047532672 @default.
- W2898047178 hasRelatedWork W2137512539 @default.
- W2898047178 hasRelatedWork W2164396049 @default.
- W2898047178 hasRelatedWork W2246597975 @default.
- W2898047178 hasRelatedWork W2339348828 @default.
- W2898047178 hasRelatedWork W2769358851 @default.
- W2898047178 hasRelatedWork W2898882859 @default.
- W2898047178 hasRelatedWork W74282844 @default.