Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898048752> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2898048752 abstract "Fast1 and robust recognition of crop diseases is the basis for crop disease prevention and control. It is also an important guarantee for crop yield and quality. Most crop disease recognition methods focus on improving the recognition accuracy on public datasets, but ignoring the anti-interference ability of the methods, which result in poor recognition accuracy when the real scene is applied. In this paper, we propose a high-order residual convolutional neural network (HOResNet) for accurate and robust recognizing crop diseases. Our HOResNet is capable of exploiting low-level features with object details and high-level features with abstract representation simultaneously in order to improve the anti-interference ability. Furthermore, in order to better verify the anti-interference ability of our approach, we introduce a new dataset, which contains 9,214 images of six diseases of Rice and Cucumber. This dataset is collected in the natural environment. The images in the dataset have different sizes, shooting angles, poses, backgrounds and illuminations. Extensive experimental results demonstrate that our approach achieves the highest accuracy on the datasets tested. In addition, when the input images are added to different levels of noise interference, our approach still obtains higher recognition accuracy than other methods." @default.
- W2898048752 created "2018-10-26" @default.
- W2898048752 creator A5029011773 @default.
- W2898048752 creator A5038209676 @default.
- W2898048752 creator A5073460837 @default.
- W2898048752 creator A5076690304 @default.
- W2898048752 creator A5077563979 @default.
- W2898048752 creator A5087982035 @default.
- W2898048752 date "2018-10-22" @default.
- W2898048752 modified "2023-09-23" @default.
- W2898048752 title "High-Order Residual Convolutional Neural Network for Robust Crop Disease Recognition" @default.
- W2898048752 cites W1858660163 @default.
- W2898048752 cites W2003007706 @default.
- W2898048752 cites W2081882777 @default.
- W2898048752 cites W2097117768 @default.
- W2898048752 cites W2112796928 @default.
- W2898048752 cites W2470803522 @default.
- W2898048752 doi "https://doi.org/10.1145/3207677.3277952" @default.
- W2898048752 hasPublicationYear "2018" @default.
- W2898048752 type Work @default.
- W2898048752 sameAs 2898048752 @default.
- W2898048752 citedByCount "11" @default.
- W2898048752 countsByYear W28980487522020 @default.
- W2898048752 countsByYear W28980487522021 @default.
- W2898048752 countsByYear W28980487522022 @default.
- W2898048752 countsByYear W28980487522023 @default.
- W2898048752 crossrefType "proceedings-article" @default.
- W2898048752 hasAuthorship W2898048752A5029011773 @default.
- W2898048752 hasAuthorship W2898048752A5038209676 @default.
- W2898048752 hasAuthorship W2898048752A5073460837 @default.
- W2898048752 hasAuthorship W2898048752A5076690304 @default.
- W2898048752 hasAuthorship W2898048752A5077563979 @default.
- W2898048752 hasAuthorship W2898048752A5087982035 @default.
- W2898048752 hasConcept C108583219 @default.
- W2898048752 hasConcept C11413529 @default.
- W2898048752 hasConcept C115961682 @default.
- W2898048752 hasConcept C119857082 @default.
- W2898048752 hasConcept C127162648 @default.
- W2898048752 hasConcept C153180895 @default.
- W2898048752 hasConcept C154945302 @default.
- W2898048752 hasConcept C155512373 @default.
- W2898048752 hasConcept C17744445 @default.
- W2898048752 hasConcept C199539241 @default.
- W2898048752 hasConcept C2776359362 @default.
- W2898048752 hasConcept C31258907 @default.
- W2898048752 hasConcept C32022120 @default.
- W2898048752 hasConcept C41008148 @default.
- W2898048752 hasConcept C81363708 @default.
- W2898048752 hasConcept C94625758 @default.
- W2898048752 hasConcept C99498987 @default.
- W2898048752 hasConceptScore W2898048752C108583219 @default.
- W2898048752 hasConceptScore W2898048752C11413529 @default.
- W2898048752 hasConceptScore W2898048752C115961682 @default.
- W2898048752 hasConceptScore W2898048752C119857082 @default.
- W2898048752 hasConceptScore W2898048752C127162648 @default.
- W2898048752 hasConceptScore W2898048752C153180895 @default.
- W2898048752 hasConceptScore W2898048752C154945302 @default.
- W2898048752 hasConceptScore W2898048752C155512373 @default.
- W2898048752 hasConceptScore W2898048752C17744445 @default.
- W2898048752 hasConceptScore W2898048752C199539241 @default.
- W2898048752 hasConceptScore W2898048752C2776359362 @default.
- W2898048752 hasConceptScore W2898048752C31258907 @default.
- W2898048752 hasConceptScore W2898048752C32022120 @default.
- W2898048752 hasConceptScore W2898048752C41008148 @default.
- W2898048752 hasConceptScore W2898048752C81363708 @default.
- W2898048752 hasConceptScore W2898048752C94625758 @default.
- W2898048752 hasConceptScore W2898048752C99498987 @default.
- W2898048752 hasLocation W28980487521 @default.
- W2898048752 hasOpenAccess W2898048752 @default.
- W2898048752 hasPrimaryLocation W28980487521 @default.
- W2898048752 hasRelatedWork W2731899572 @default.
- W2898048752 hasRelatedWork W2782645198 @default.
- W2898048752 hasRelatedWork W2999805992 @default.
- W2898048752 hasRelatedWork W3116150086 @default.
- W2898048752 hasRelatedWork W3133861977 @default.
- W2898048752 hasRelatedWork W4200173597 @default.
- W2898048752 hasRelatedWork W4291897433 @default.
- W2898048752 hasRelatedWork W4312417841 @default.
- W2898048752 hasRelatedWork W4321369474 @default.
- W2898048752 hasRelatedWork W4380075502 @default.
- W2898048752 isParatext "false" @default.
- W2898048752 isRetracted "false" @default.
- W2898048752 magId "2898048752" @default.
- W2898048752 workType "article" @default.