Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898063009> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2898063009 abstract "Rational maps are fundamental objects in algebraic geometry. They are used to describe some geometric objects,such as parametric representation of rational algebraic varieties. Lately, rational maps appeared in computer-engineering contexts, mostly applied to shape modeling using computer-aided design methods for curves and surfaces. Parameterized algebraic curves and surfaces are used intensively to describe objects in geometric modeling, such as car bodies, airplanes.Therefore, the study of rational maps is of theoretical interest in algebraic geometry and commutative algebra, and of practical importance in geometric modeling. My thesis studies images and fibers of rational maps in relation with the equations of the symmetric and Rees algebras. In geometric modeling, it is of vital importance to have a detailed knowledge of the geometry of the object and of the parametric representation with which one is working. The question of how many times is the same point being painted (i.e., corresponds to distinct values of parameter), depends not only on the variety itself, but also on the parameterization. It is of interest for applications to determine the singularities of the parameterizations. In the chapters 2 and 3, we study the fibers of a rational map from P^m to P^nthat is generically finite onto its image. More precisely, in the second chapter, we will treat the case of parameterizations of algebraic rational surfaces. In this case, we give a quadratic bound in the degree of the defining equations for the number of one-dimensional fibers of the canonical projection of the graph of $phi$ onto its image,by studying of the difference between the initial degree of ordinary and saturated powers of the base ideal. In the third chapter, we refine and generalize the results on fibers of the previous chapter.More generally, we establish a linear bound in the degree of the defining equations for the number of (m-1)-dimensional fibers of the canonical projection of its graph onto its image, by using ideals of minors of the matrix.In the fourth chapter, we consider rational maps whose source is a product of two subvarieties, each one being embedded in a projective space. Our main objective is to investigate birationality criteria for such maps. First, a general criterion is given in terms of the rank of a couple of matrices that came to be known as Jacobian dual matrices. Then, we focus on rational maps from P^1 x P^1 to P^2 in very low bidegrees and provide new matrix-based birationality criteria by analyzing the syzygies of the defining equations of the map, in particular by looking at the dimension of certain bigraded parts of the syzygy module. Finally, applications of our results to the context of geometric modeling are discussed at the end of the chapter." @default.
- W2898063009 created "2018-10-26" @default.
- W2898063009 creator A5079010547 @default.
- W2898063009 date "2017-11-17" @default.
- W2898063009 modified "2023-09-24" @default.
- W2898063009 title "Images and fibers of rational applications and burst algebra" @default.
- W2898063009 hasPublicationYear "2017" @default.
- W2898063009 type Work @default.
- W2898063009 sameAs 2898063009 @default.
- W2898063009 citedByCount "0" @default.
- W2898063009 crossrefType "dissertation" @default.
- W2898063009 hasAuthorship W2898063009A5079010547 @default.
- W2898063009 hasConcept C105795698 @default.
- W2898063009 hasConcept C114614502 @default.
- W2898063009 hasConcept C117251300 @default.
- W2898063009 hasConcept C134306372 @default.
- W2898063009 hasConcept C136119220 @default.
- W2898063009 hasConcept C156330621 @default.
- W2898063009 hasConcept C165464430 @default.
- W2898063009 hasConcept C17744445 @default.
- W2898063009 hasConcept C199539241 @default.
- W2898063009 hasConcept C202444582 @default.
- W2898063009 hasConcept C2524010 @default.
- W2898063009 hasConcept C2776359362 @default.
- W2898063009 hasConcept C33923547 @default.
- W2898063009 hasConcept C68363185 @default.
- W2898063009 hasConcept C69653121 @default.
- W2898063009 hasConcept C75190567 @default.
- W2898063009 hasConcept C9376300 @default.
- W2898063009 hasConcept C94625758 @default.
- W2898063009 hasConcept C96881808 @default.
- W2898063009 hasConcept C99636146 @default.
- W2898063009 hasConceptScore W2898063009C105795698 @default.
- W2898063009 hasConceptScore W2898063009C114614502 @default.
- W2898063009 hasConceptScore W2898063009C117251300 @default.
- W2898063009 hasConceptScore W2898063009C134306372 @default.
- W2898063009 hasConceptScore W2898063009C136119220 @default.
- W2898063009 hasConceptScore W2898063009C156330621 @default.
- W2898063009 hasConceptScore W2898063009C165464430 @default.
- W2898063009 hasConceptScore W2898063009C17744445 @default.
- W2898063009 hasConceptScore W2898063009C199539241 @default.
- W2898063009 hasConceptScore W2898063009C202444582 @default.
- W2898063009 hasConceptScore W2898063009C2524010 @default.
- W2898063009 hasConceptScore W2898063009C2776359362 @default.
- W2898063009 hasConceptScore W2898063009C33923547 @default.
- W2898063009 hasConceptScore W2898063009C68363185 @default.
- W2898063009 hasConceptScore W2898063009C69653121 @default.
- W2898063009 hasConceptScore W2898063009C75190567 @default.
- W2898063009 hasConceptScore W2898063009C9376300 @default.
- W2898063009 hasConceptScore W2898063009C94625758 @default.
- W2898063009 hasConceptScore W2898063009C96881808 @default.
- W2898063009 hasConceptScore W2898063009C99636146 @default.
- W2898063009 hasLocation W28980630091 @default.
- W2898063009 hasOpenAccess W2898063009 @default.
- W2898063009 hasPrimaryLocation W28980630091 @default.
- W2898063009 hasRelatedWork W1515683204 @default.
- W2898063009 hasRelatedWork W1558371085 @default.
- W2898063009 hasRelatedWork W1576168783 @default.
- W2898063009 hasRelatedWork W1832401462 @default.
- W2898063009 hasRelatedWork W1856249202 @default.
- W2898063009 hasRelatedWork W1963570319 @default.
- W2898063009 hasRelatedWork W2027351807 @default.
- W2898063009 hasRelatedWork W2031760926 @default.
- W2898063009 hasRelatedWork W2040675639 @default.
- W2898063009 hasRelatedWork W2311880482 @default.
- W2898063009 hasRelatedWork W2338416969 @default.
- W2898063009 hasRelatedWork W2477292174 @default.
- W2898063009 hasRelatedWork W2622143105 @default.
- W2898063009 hasRelatedWork W2906011919 @default.
- W2898063009 hasRelatedWork W2911334095 @default.
- W2898063009 hasRelatedWork W2962958582 @default.
- W2898063009 hasRelatedWork W2963330972 @default.
- W2898063009 hasRelatedWork W3074335951 @default.
- W2898063009 hasRelatedWork W3099308010 @default.
- W2898063009 hasRelatedWork W3192719787 @default.
- W2898063009 isParatext "false" @default.
- W2898063009 isRetracted "false" @default.
- W2898063009 magId "2898063009" @default.
- W2898063009 workType "dissertation" @default.