Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898065605> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2898065605 endingPage "1392" @default.
- W2898065605 startingPage "1384" @default.
- W2898065605 abstract "Abstract With the frequent occurrence of extreme weather, power transmission line icing, a general phenomenon during winter which may bring serious economic losses to the electric power system, has attracted increasing attention. However, owing to the complexity nature of wire ice covering, it is essential to establish an icing thickness forecasting model with high-accuracy for guaranteeing the security and stability of the power grid. Hence, this paper proposes a hybrid model that combines wavelet transform (WT) with extreme learning machine optimized by bat algorithm (BA-ELM). The original icing data containing icing thickness and meteorological factors are first denoised by WT and then divided into several stages based on the characteristics of icing period. Bivariate correlation analysis and partial auto correlation function (PACF) are used to select the inputs of different stages. Subsequently, ELM whose input weights and bias threshold were optimized BA is built to forecast icing thickness. To verify the developed model, icing data from two power transmission lines located in Hunan province are applied for experiments. The simulation results demonstrate that not only the proposed model shows a better performance but also the staged modeling can highly improve icing thickness prediction accuracy." @default.
- W2898065605 created "2018-10-26" @default.
- W2898065605 creator A5030608872 @default.
- W2898065605 creator A5075522947 @default.
- W2898065605 date "2019-01-01" @default.
- W2898065605 modified "2023-09-27" @default.
- W2898065605 title "Staged icing forecasting of power transmission lines based on icing cycle and improved extreme learning machine" @default.
- W2898065605 cites W1514832573 @default.
- W2898065605 cites W2019975791 @default.
- W2898065605 cites W2111072639 @default.
- W2898065605 cites W2273885911 @default.
- W2898065605 cites W2286725013 @default.
- W2898065605 cites W2556751232 @default.
- W2898065605 cites W2626749429 @default.
- W2898065605 cites W2748955233 @default.
- W2898065605 cites W2768344282 @default.
- W2898065605 cites W2888421951 @default.
- W2898065605 doi "https://doi.org/10.1016/j.jclepro.2018.10.197" @default.
- W2898065605 hasPublicationYear "2019" @default.
- W2898065605 type Work @default.
- W2898065605 sameAs 2898065605 @default.
- W2898065605 citedByCount "24" @default.
- W2898065605 countsByYear W28980656052019 @default.
- W2898065605 countsByYear W28980656052020 @default.
- W2898065605 countsByYear W28980656052021 @default.
- W2898065605 countsByYear W28980656052022 @default.
- W2898065605 countsByYear W28980656052023 @default.
- W2898065605 crossrefType "journal-article" @default.
- W2898065605 hasAuthorship W2898065605A5030608872 @default.
- W2898065605 hasAuthorship W2898065605A5075522947 @default.
- W2898065605 hasConcept C119599485 @default.
- W2898065605 hasConcept C127313418 @default.
- W2898065605 hasConcept C127413603 @default.
- W2898065605 hasConcept C140311924 @default.
- W2898065605 hasConcept C153294291 @default.
- W2898065605 hasConcept C154945302 @default.
- W2898065605 hasConcept C205649164 @default.
- W2898065605 hasConcept C2780150128 @default.
- W2898065605 hasConcept C2781439067 @default.
- W2898065605 hasConcept C39432304 @default.
- W2898065605 hasConcept C41008148 @default.
- W2898065605 hasConcept C49204034 @default.
- W2898065605 hasConcept C50644808 @default.
- W2898065605 hasConceptScore W2898065605C119599485 @default.
- W2898065605 hasConceptScore W2898065605C127313418 @default.
- W2898065605 hasConceptScore W2898065605C127413603 @default.
- W2898065605 hasConceptScore W2898065605C140311924 @default.
- W2898065605 hasConceptScore W2898065605C153294291 @default.
- W2898065605 hasConceptScore W2898065605C154945302 @default.
- W2898065605 hasConceptScore W2898065605C205649164 @default.
- W2898065605 hasConceptScore W2898065605C2780150128 @default.
- W2898065605 hasConceptScore W2898065605C2781439067 @default.
- W2898065605 hasConceptScore W2898065605C39432304 @default.
- W2898065605 hasConceptScore W2898065605C41008148 @default.
- W2898065605 hasConceptScore W2898065605C49204034 @default.
- W2898065605 hasConceptScore W2898065605C50644808 @default.
- W2898065605 hasLocation W28980656051 @default.
- W2898065605 hasOpenAccess W2898065605 @default.
- W2898065605 hasPrimaryLocation W28980656051 @default.
- W2898065605 hasRelatedWork W1497183646 @default.
- W2898065605 hasRelatedWork W2045180099 @default.
- W2898065605 hasRelatedWork W2358812917 @default.
- W2898065605 hasRelatedWork W2359114793 @default.
- W2898065605 hasRelatedWork W2374574870 @default.
- W2898065605 hasRelatedWork W2537253348 @default.
- W2898065605 hasRelatedWork W2748952813 @default.
- W2898065605 hasRelatedWork W2899084033 @default.
- W2898065605 hasRelatedWork W3133146932 @default.
- W2898065605 hasRelatedWork W4200465505 @default.
- W2898065605 hasVolume "208" @default.
- W2898065605 isParatext "false" @default.
- W2898065605 isRetracted "false" @default.
- W2898065605 magId "2898065605" @default.
- W2898065605 workType "article" @default.