Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898068981> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2898068981 abstract "Neural language models are being increasingly used for unsupervised text classification and clustering tasks, with proposals that learn vector representations from word- to document-level. We have adapted one of the latter to discover Wikipedia articles which are relevant to selected historical topics, and also to a given question and its correct answer, by exploiting not only the knowledge captured in the writing of the articles themselves, but also in their classification in wikicategories. Our goal is to automate the generation of personalized multiple-choice quizzes, with wrong alternatives to the correct answer tailored to the level of knowledge of the target user on the selected topics. The approach is shown to provide diverse and meaningful alternatives, in a way that even the absurd ones - which are included mainly for fun-do have some interesting connections to the right answers." @default.
- W2898068981 created "2018-10-26" @default.
- W2898068981 creator A5002790244 @default.
- W2898068981 creator A5012831769 @default.
- W2898068981 creator A5024510171 @default.
- W2898068981 creator A5026028765 @default.
- W2898068981 creator A5051252233 @default.
- W2898068981 creator A5073680999 @default.
- W2898068981 date "2018-09-01" @default.
- W2898068981 modified "2023-09-25" @default.
- W2898068981 title "Deep Guessing: Generating Meaningful Personalized Quizzes on Historical Topics by Introducing Wikicategories in Doc2Vec" @default.
- W2898068981 cites W1498436455 @default.
- W2898068981 cites W1976178904 @default.
- W2898068981 cites W1984052055 @default.
- W2898068981 cites W2020199624 @default.
- W2898068981 cites W2165897980 @default.
- W2898068981 cites W2513276162 @default.
- W2898068981 cites W2556129473 @default.
- W2898068981 cites W4214743915 @default.
- W2898068981 doi "https://doi.org/10.1109/smap.2018.8501891" @default.
- W2898068981 hasPublicationYear "2018" @default.
- W2898068981 type Work @default.
- W2898068981 sameAs 2898068981 @default.
- W2898068981 citedByCount "0" @default.
- W2898068981 crossrefType "proceedings-article" @default.
- W2898068981 hasAuthorship W2898068981A5002790244 @default.
- W2898068981 hasAuthorship W2898068981A5012831769 @default.
- W2898068981 hasAuthorship W2898068981A5024510171 @default.
- W2898068981 hasAuthorship W2898068981A5026028765 @default.
- W2898068981 hasAuthorship W2898068981A5051252233 @default.
- W2898068981 hasAuthorship W2898068981A5073680999 @default.
- W2898068981 hasConcept C136764020 @default.
- W2898068981 hasConcept C138885662 @default.
- W2898068981 hasConcept C154945302 @default.
- W2898068981 hasConcept C204321447 @default.
- W2898068981 hasConcept C23123220 @default.
- W2898068981 hasConcept C41008148 @default.
- W2898068981 hasConcept C41895202 @default.
- W2898068981 hasConcept C73555534 @default.
- W2898068981 hasConcept C90805587 @default.
- W2898068981 hasConceptScore W2898068981C136764020 @default.
- W2898068981 hasConceptScore W2898068981C138885662 @default.
- W2898068981 hasConceptScore W2898068981C154945302 @default.
- W2898068981 hasConceptScore W2898068981C204321447 @default.
- W2898068981 hasConceptScore W2898068981C23123220 @default.
- W2898068981 hasConceptScore W2898068981C41008148 @default.
- W2898068981 hasConceptScore W2898068981C41895202 @default.
- W2898068981 hasConceptScore W2898068981C73555534 @default.
- W2898068981 hasConceptScore W2898068981C90805587 @default.
- W2898068981 hasLocation W28980689811 @default.
- W2898068981 hasOpenAccess W2898068981 @default.
- W2898068981 hasPrimaryLocation W28980689811 @default.
- W2898068981 hasRelatedWork W2086064646 @default.
- W2898068981 hasRelatedWork W2115485936 @default.
- W2898068981 hasRelatedWork W2119135658 @default.
- W2898068981 hasRelatedWork W2293457016 @default.
- W2898068981 hasRelatedWork W2353329674 @default.
- W2898068981 hasRelatedWork W2357241418 @default.
- W2898068981 hasRelatedWork W2360025963 @default.
- W2898068981 hasRelatedWork W2360785147 @default.
- W2898068981 hasRelatedWork W2748952813 @default.
- W2898068981 hasRelatedWork W2789919619 @default.
- W2898068981 isParatext "false" @default.
- W2898068981 isRetracted "false" @default.
- W2898068981 magId "2898068981" @default.
- W2898068981 workType "article" @default.