Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898069881> ?p ?o ?g. }
- W2898069881 endingPage "37" @default.
- W2898069881 startingPage "29" @default.
- W2898069881 abstract "Nonnegative matrix factorization (NMF) has received intensive attention due to producing a parts-based representation of the data. However, because of the non-convexity of NMF models, these methods easily obtain a bad local solution. To alleviate this deficiency, this paper presents a novel NMF method by gradually including data points into NMF from easy to complex, namely self-paced learning (SPL), which is shown to be beneficial in avoiding a bad local solution. Furthermore, instead of using the conventional hard weighting scheme, we adopt the soft weighting strategy of SPL to further improve the performance of our model. An iterative updating algorithm is proposed to solve the optimization problem of our method. The convergence of the updating rules is also theoretically guaranteed. Experiments on both toy data and real-world benchmark datasets demonstrate the effectiveness of the proposed method." @default.
- W2898069881 created "2018-10-26" @default.
- W2898069881 creator A5026312781 @default.
- W2898069881 creator A5046408141 @default.
- W2898069881 creator A5051227924 @default.
- W2898069881 creator A5055826974 @default.
- W2898069881 creator A5070559820 @default.
- W2898069881 date "2019-01-01" @default.
- W2898069881 modified "2023-10-15" @default.
- W2898069881 title "Self-paced and soft-weighted nonnegative matrix factorization for data representation" @default.
- W2898069881 cites W1154172097 @default.
- W2898069881 cites W1976391658 @default.
- W2898069881 cites W2019564823 @default.
- W2898069881 cites W2040006565 @default.
- W2898069881 cites W2086479834 @default.
- W2898069881 cites W2089088255 @default.
- W2898069881 cites W2131828344 @default.
- W2898069881 cites W2162316550 @default.
- W2898069881 cites W2168103112 @default.
- W2898069881 cites W2276298621 @default.
- W2898069881 cites W2473409175 @default.
- W2898069881 cites W2520619240 @default.
- W2898069881 cites W2567650686 @default.
- W2898069881 cites W2622869899 @default.
- W2898069881 cites W2682265686 @default.
- W2898069881 cites W2765771013 @default.
- W2898069881 cites W2789635684 @default.
- W2898069881 cites W2803104255 @default.
- W2898069881 cites W2803341107 @default.
- W2898069881 doi "https://doi.org/10.1016/j.knosys.2018.10.003" @default.
- W2898069881 hasPublicationYear "2019" @default.
- W2898069881 type Work @default.
- W2898069881 sameAs 2898069881 @default.
- W2898069881 citedByCount "15" @default.
- W2898069881 countsByYear W28980698812019 @default.
- W2898069881 countsByYear W28980698812020 @default.
- W2898069881 countsByYear W28980698812021 @default.
- W2898069881 countsByYear W28980698812022 @default.
- W2898069881 countsByYear W28980698812023 @default.
- W2898069881 crossrefType "journal-article" @default.
- W2898069881 hasAuthorship W2898069881A5026312781 @default.
- W2898069881 hasAuthorship W2898069881A5046408141 @default.
- W2898069881 hasAuthorship W2898069881A5051227924 @default.
- W2898069881 hasAuthorship W2898069881A5055826974 @default.
- W2898069881 hasAuthorship W2898069881A5070559820 @default.
- W2898069881 hasConcept C106159729 @default.
- W2898069881 hasConcept C11413529 @default.
- W2898069881 hasConcept C121332964 @default.
- W2898069881 hasConcept C126255220 @default.
- W2898069881 hasConcept C126838900 @default.
- W2898069881 hasConcept C13280743 @default.
- W2898069881 hasConcept C134306372 @default.
- W2898069881 hasConcept C152671427 @default.
- W2898069881 hasConcept C154945302 @default.
- W2898069881 hasConcept C158693339 @default.
- W2898069881 hasConcept C162324750 @default.
- W2898069881 hasConcept C17744445 @default.
- W2898069881 hasConcept C183115368 @default.
- W2898069881 hasConcept C185798385 @default.
- W2898069881 hasConcept C199539241 @default.
- W2898069881 hasConcept C205649164 @default.
- W2898069881 hasConcept C2776359362 @default.
- W2898069881 hasConcept C2777303404 @default.
- W2898069881 hasConcept C33923547 @default.
- W2898069881 hasConcept C41008148 @default.
- W2898069881 hasConcept C42355184 @default.
- W2898069881 hasConcept C50522688 @default.
- W2898069881 hasConcept C62520636 @default.
- W2898069881 hasConcept C71924100 @default.
- W2898069881 hasConcept C72134830 @default.
- W2898069881 hasConcept C77618280 @default.
- W2898069881 hasConcept C94625758 @default.
- W2898069881 hasConceptScore W2898069881C106159729 @default.
- W2898069881 hasConceptScore W2898069881C11413529 @default.
- W2898069881 hasConceptScore W2898069881C121332964 @default.
- W2898069881 hasConceptScore W2898069881C126255220 @default.
- W2898069881 hasConceptScore W2898069881C126838900 @default.
- W2898069881 hasConceptScore W2898069881C13280743 @default.
- W2898069881 hasConceptScore W2898069881C134306372 @default.
- W2898069881 hasConceptScore W2898069881C152671427 @default.
- W2898069881 hasConceptScore W2898069881C154945302 @default.
- W2898069881 hasConceptScore W2898069881C158693339 @default.
- W2898069881 hasConceptScore W2898069881C162324750 @default.
- W2898069881 hasConceptScore W2898069881C17744445 @default.
- W2898069881 hasConceptScore W2898069881C183115368 @default.
- W2898069881 hasConceptScore W2898069881C185798385 @default.
- W2898069881 hasConceptScore W2898069881C199539241 @default.
- W2898069881 hasConceptScore W2898069881C205649164 @default.
- W2898069881 hasConceptScore W2898069881C2776359362 @default.
- W2898069881 hasConceptScore W2898069881C2777303404 @default.
- W2898069881 hasConceptScore W2898069881C33923547 @default.
- W2898069881 hasConceptScore W2898069881C41008148 @default.
- W2898069881 hasConceptScore W2898069881C42355184 @default.
- W2898069881 hasConceptScore W2898069881C50522688 @default.
- W2898069881 hasConceptScore W2898069881C62520636 @default.
- W2898069881 hasConceptScore W2898069881C71924100 @default.
- W2898069881 hasConceptScore W2898069881C72134830 @default.
- W2898069881 hasConceptScore W2898069881C77618280 @default.