Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898073216> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2898073216 abstract "In this contemporary era of artificial intelligence, machine learning (ML) algorithms are getting significant attention for the analysis of textual analysis. In recent years, operational improvement in different corporate sectors of Bangladesh are achieved by implementing digitization of the process flow instead of using manual paper trails in offices. Nowadays, judicial sectors are included into sate wide digitalization process by archiving the judiciary records. Despite such improvement, autonomic categorizing of documents using textual analysis is not seen in labeling the correct class of a judicial document. In fact, officers spend lots of time in manual labeling of court related document. In our present investigation, we approached a textual analysis tool that can initiate towards the major solution for solving the manual categorization problem within the judicial sector of Bangladesh. Our objective is to label a normalized text document by implementing ML algorithm into suitable class in terms of the case type. In addition, grammatical analysis of English documents is integrated by the natural language processing (NLP) techniques as well as the filtering of feature sets by TF-IDF based term weighting scheme. The outcomes show the important impacts of NLP techniques for generating useful training data in KNN classification algorithm for the categorization of English documents in Bangladeshi judiciary sector." @default.
- W2898073216 created "2018-10-26" @default.
- W2898073216 creator A5010153430 @default.
- W2898073216 creator A5063100570 @default.
- W2898073216 date "2018-02-01" @default.
- W2898073216 modified "2023-09-27" @default.
- W2898073216 title "Evaluating Document Analysis with kNN Based Approaches in Judicial Offices of Bangladesh" @default.
- W2898073216 cites W1968032964 @default.
- W2898073216 cites W1982589161 @default.
- W2898073216 cites W1995258314 @default.
- W2898073216 cites W2017882693 @default.
- W2898073216 cites W2087609354 @default.
- W2898073216 cites W2088542209 @default.
- W2898073216 cites W2118020653 @default.
- W2898073216 cites W2127434515 @default.
- W2898073216 cites W2316779280 @default.
- W2898073216 cites W2480273168 @default.
- W2898073216 cites W2611929813 @default.
- W2898073216 doi "https://doi.org/10.1109/iccmc.2018.8487847" @default.
- W2898073216 hasPublicationYear "2018" @default.
- W2898073216 type Work @default.
- W2898073216 sameAs 2898073216 @default.
- W2898073216 citedByCount "2" @default.
- W2898073216 countsByYear W28980732162020 @default.
- W2898073216 countsByYear W28980732162021 @default.
- W2898073216 crossrefType "proceedings-article" @default.
- W2898073216 hasAuthorship W2898073216A5010153430 @default.
- W2898073216 hasAuthorship W2898073216A5063100570 @default.
- W2898073216 hasConcept C111919701 @default.
- W2898073216 hasConcept C119857082 @default.
- W2898073216 hasConcept C126838900 @default.
- W2898073216 hasConcept C138885662 @default.
- W2898073216 hasConcept C154945302 @default.
- W2898073216 hasConcept C183115368 @default.
- W2898073216 hasConcept C204321447 @default.
- W2898073216 hasConcept C23123220 @default.
- W2898073216 hasConcept C2776401178 @default.
- W2898073216 hasConcept C2777212361 @default.
- W2898073216 hasConcept C2779308522 @default.
- W2898073216 hasConcept C31972630 @default.
- W2898073216 hasConcept C41008148 @default.
- W2898073216 hasConcept C41895202 @default.
- W2898073216 hasConcept C71924100 @default.
- W2898073216 hasConcept C94124525 @default.
- W2898073216 hasConcept C98045186 @default.
- W2898073216 hasConceptScore W2898073216C111919701 @default.
- W2898073216 hasConceptScore W2898073216C119857082 @default.
- W2898073216 hasConceptScore W2898073216C126838900 @default.
- W2898073216 hasConceptScore W2898073216C138885662 @default.
- W2898073216 hasConceptScore W2898073216C154945302 @default.
- W2898073216 hasConceptScore W2898073216C183115368 @default.
- W2898073216 hasConceptScore W2898073216C204321447 @default.
- W2898073216 hasConceptScore W2898073216C23123220 @default.
- W2898073216 hasConceptScore W2898073216C2776401178 @default.
- W2898073216 hasConceptScore W2898073216C2777212361 @default.
- W2898073216 hasConceptScore W2898073216C2779308522 @default.
- W2898073216 hasConceptScore W2898073216C31972630 @default.
- W2898073216 hasConceptScore W2898073216C41008148 @default.
- W2898073216 hasConceptScore W2898073216C41895202 @default.
- W2898073216 hasConceptScore W2898073216C71924100 @default.
- W2898073216 hasConceptScore W2898073216C94124525 @default.
- W2898073216 hasConceptScore W2898073216C98045186 @default.
- W2898073216 hasLocation W28980732161 @default.
- W2898073216 hasOpenAccess W2898073216 @default.
- W2898073216 hasPrimaryLocation W28980732161 @default.
- W2898073216 hasRelatedWork W1533773673 @default.
- W2898073216 hasRelatedWork W2039590859 @default.
- W2898073216 hasRelatedWork W2040740170 @default.
- W2898073216 hasRelatedWork W2047139419 @default.
- W2898073216 hasRelatedWork W2125109223 @default.
- W2898073216 hasRelatedWork W2132592511 @default.
- W2898073216 hasRelatedWork W2355149094 @default.
- W2898073216 hasRelatedWork W2365213443 @default.
- W2898073216 hasRelatedWork W2369517460 @default.
- W2898073216 hasRelatedWork W2961085424 @default.
- W2898073216 isParatext "false" @default.
- W2898073216 isRetracted "false" @default.
- W2898073216 magId "2898073216" @default.
- W2898073216 workType "article" @default.