Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898076323> ?p ?o ?g. }
- W2898076323 abstract "A general framework for principal component analysis (PCA) in the presence of heteroskedastic noise is introduced. We propose an algorithm called HeteroPCA, which involves iteratively imputing the diagonal entries of the sample covariance matrix to remove estimation bias due to heteroskedasticity. This procedure is computationally efficient and provably optimal under the generalized spiked covariance model. A key technical step is a deterministic robust perturbation analysis on singular subspaces, which can be of independent interest. The effectiveness of the proposed algorithm is demonstrated in a suite of problems in high-dimensional statistics, including singular value decomposition (SVD) under heteroskedastic noise, Poisson PCA, and SVD for heteroskedastic and incomplete data." @default.
- W2898076323 created "2018-10-26" @default.
- W2898076323 creator A5022543590 @default.
- W2898076323 creator A5025435311 @default.
- W2898076323 creator A5091812052 @default.
- W2898076323 date "2022-02-01" @default.
- W2898076323 modified "2023-10-01" @default.
- W2898076323 title "Heteroskedastic PCA: Algorithm, optimality, and applications" @default.
- W2898076323 cites W143531921 @default.
- W2898076323 cites W1520752838 @default.
- W2898076323 cites W1901790663 @default.
- W2898076323 cites W1970377488 @default.
- W2898076323 cites W1996023858 @default.
- W2898076323 cites W2000157792 @default.
- W2898076323 cites W2017304912 @default.
- W2898076323 cites W2018282388 @default.
- W2898076323 cites W2025341678 @default.
- W2898076323 cites W2045547832 @default.
- W2898076323 cites W2046164006 @default.
- W2898076323 cites W2063942101 @default.
- W2898076323 cites W2066459155 @default.
- W2898076323 cites W2074609004 @default.
- W2898076323 cites W2077119057 @default.
- W2898076323 cites W2088911135 @default.
- W2898076323 cites W2106005123 @default.
- W2898076323 cites W2106084579 @default.
- W2898076323 cites W2121615320 @default.
- W2898076323 cites W2125027820 @default.
- W2898076323 cites W2127048411 @default.
- W2898076323 cites W2134332047 @default.
- W2898076323 cites W2135497302 @default.
- W2898076323 cites W2139549981 @default.
- W2898076323 cites W2143665831 @default.
- W2898076323 cites W2147140611 @default.
- W2898076323 cites W2568381517 @default.
- W2898076323 cites W2611328865 @default.
- W2898076323 cites W2626872000 @default.
- W2898076323 cites W2726993892 @default.
- W2898076323 cites W2734385411 @default.
- W2898076323 cites W2885671484 @default.
- W2898076323 cites W2940730419 @default.
- W2898076323 cites W2962946304 @default.
- W2898076323 cites W2962988625 @default.
- W2898076323 cites W2963106396 @default.
- W2898076323 cites W2963893933 @default.
- W2898076323 cites W2964044082 @default.
- W2898076323 cites W2964066048 @default.
- W2898076323 cites W2965497096 @default.
- W2898076323 cites W2981134103 @default.
- W2898076323 cites W2998646257 @default.
- W2898076323 cites W3101545114 @default.
- W2898076323 cites W3105364218 @default.
- W2898076323 cites W3108352751 @default.
- W2898076323 cites W4206742934 @default.
- W2898076323 cites W4294113920 @default.
- W2898076323 cites W2964167320 @default.
- W2898076323 doi "https://doi.org/10.1214/21-aos2074" @default.
- W2898076323 hasPublicationYear "2022" @default.
- W2898076323 type Work @default.
- W2898076323 sameAs 2898076323 @default.
- W2898076323 citedByCount "28" @default.
- W2898076323 countsByYear W28980763232018 @default.
- W2898076323 countsByYear W28980763232019 @default.
- W2898076323 countsByYear W28980763232020 @default.
- W2898076323 countsByYear W28980763232021 @default.
- W2898076323 countsByYear W28980763232022 @default.
- W2898076323 countsByYear W28980763232023 @default.
- W2898076323 crossrefType "journal-article" @default.
- W2898076323 hasAuthorship W2898076323A5022543590 @default.
- W2898076323 hasAuthorship W2898076323A5025435311 @default.
- W2898076323 hasAuthorship W2898076323A5091812052 @default.
- W2898076323 hasBestOaLocation W28980763232 @default.
- W2898076323 hasConcept C101104100 @default.
- W2898076323 hasConcept C105795698 @default.
- W2898076323 hasConcept C11413529 @default.
- W2898076323 hasConcept C126255220 @default.
- W2898076323 hasConcept C185142706 @default.
- W2898076323 hasConcept C22789450 @default.
- W2898076323 hasConcept C27438332 @default.
- W2898076323 hasConcept C33923547 @default.
- W2898076323 hasConceptScore W2898076323C101104100 @default.
- W2898076323 hasConceptScore W2898076323C105795698 @default.
- W2898076323 hasConceptScore W2898076323C11413529 @default.
- W2898076323 hasConceptScore W2898076323C126255220 @default.
- W2898076323 hasConceptScore W2898076323C185142706 @default.
- W2898076323 hasConceptScore W2898076323C22789450 @default.
- W2898076323 hasConceptScore W2898076323C27438332 @default.
- W2898076323 hasConceptScore W2898076323C33923547 @default.
- W2898076323 hasIssue "1" @default.
- W2898076323 hasLocation W28980763231 @default.
- W2898076323 hasLocation W28980763232 @default.
- W2898076323 hasOpenAccess W2898076323 @default.
- W2898076323 hasPrimaryLocation W28980763231 @default.
- W2898076323 hasRelatedWork W1985417024 @default.
- W2898076323 hasRelatedWork W2038584443 @default.
- W2898076323 hasRelatedWork W2039283522 @default.
- W2898076323 hasRelatedWork W2137166295 @default.
- W2898076323 hasRelatedWork W2158047856 @default.
- W2898076323 hasRelatedWork W2349382218 @default.
- W2898076323 hasRelatedWork W2495794967 @default.