Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898080879> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2898080879 endingPage "012047" @default.
- W2898080879 startingPage "012047" @default.
- W2898080879 abstract "Under the market environment, power generation investment has become an investment behavior aimed at maximizing the interests of investors, and the construction of power generation projects presents the characteristics of uncertainty, so it is difficult to balance power supply and demand. In this context, how to make their own optimal investment decisions to reduce risk has become a very important issue for a single power generation company. Therefore, from the point of view of the whole system, this paper focuses on the causal relationship between the variables of the power generation investment system under the market environment, and on the basis of power supply and demand balance, puts forward a power grid investment capacity prediction model based on the grey neural network combination model. In this paper, the investment of power grid in a province of China is taken as the research object, the grey neural network prediction model is constructed, the investment demand and the internal and external influence indexes of the investment capacity of power grid are analyzed, and the investment demand and the investment capacity in the next six years are predicted. The prediction results verify the correctness and effectiveness of the grey neural network model in the investment prediction of power grid." @default.
- W2898080879 created "2018-10-26" @default.
- W2898080879 creator A5008050645 @default.
- W2898080879 creator A5016887977 @default.
- W2898080879 creator A5059792910 @default.
- W2898080879 creator A5065859286 @default.
- W2898080879 creator A5076994539 @default.
- W2898080879 creator A5081022424 @default.
- W2898080879 date "2018-10-11" @default.
- W2898080879 modified "2023-09-24" @default.
- W2898080879 title "Forecasting of power grid investment capability based on grey neural network combination model" @default.
- W2898080879 cites W2002882858 @default.
- W2898080879 cites W2009233123 @default.
- W2898080879 cites W2058704250 @default.
- W2898080879 cites W2128789142 @default.
- W2898080879 cites W2141281064 @default.
- W2898080879 cites W2143586696 @default.
- W2898080879 cites W2149398317 @default.
- W2898080879 doi "https://doi.org/10.1088/1755-1315/186/4/012047" @default.
- W2898080879 hasPublicationYear "2018" @default.
- W2898080879 type Work @default.
- W2898080879 sameAs 2898080879 @default.
- W2898080879 citedByCount "0" @default.
- W2898080879 crossrefType "journal-article" @default.
- W2898080879 hasAuthorship W2898080879A5008050645 @default.
- W2898080879 hasAuthorship W2898080879A5016887977 @default.
- W2898080879 hasAuthorship W2898080879A5059792910 @default.
- W2898080879 hasAuthorship W2898080879A5065859286 @default.
- W2898080879 hasAuthorship W2898080879A5076994539 @default.
- W2898080879 hasAuthorship W2898080879A5081022424 @default.
- W2898080879 hasBestOaLocation W28980808791 @default.
- W2898080879 hasConcept C120330832 @default.
- W2898080879 hasConcept C134560507 @default.
- W2898080879 hasConcept C144133560 @default.
- W2898080879 hasConcept C151730666 @default.
- W2898080879 hasConcept C154945302 @default.
- W2898080879 hasConcept C162324750 @default.
- W2898080879 hasConcept C175444787 @default.
- W2898080879 hasConcept C17744445 @default.
- W2898080879 hasConcept C187691185 @default.
- W2898080879 hasConcept C199539241 @default.
- W2898080879 hasConcept C2524010 @default.
- W2898080879 hasConcept C27548731 @default.
- W2898080879 hasConcept C2779343474 @default.
- W2898080879 hasConcept C33923547 @default.
- W2898080879 hasConcept C41008148 @default.
- W2898080879 hasConcept C50644808 @default.
- W2898080879 hasConcept C86803240 @default.
- W2898080879 hasConcept C94625758 @default.
- W2898080879 hasConceptScore W2898080879C120330832 @default.
- W2898080879 hasConceptScore W2898080879C134560507 @default.
- W2898080879 hasConceptScore W2898080879C144133560 @default.
- W2898080879 hasConceptScore W2898080879C151730666 @default.
- W2898080879 hasConceptScore W2898080879C154945302 @default.
- W2898080879 hasConceptScore W2898080879C162324750 @default.
- W2898080879 hasConceptScore W2898080879C175444787 @default.
- W2898080879 hasConceptScore W2898080879C17744445 @default.
- W2898080879 hasConceptScore W2898080879C187691185 @default.
- W2898080879 hasConceptScore W2898080879C199539241 @default.
- W2898080879 hasConceptScore W2898080879C2524010 @default.
- W2898080879 hasConceptScore W2898080879C27548731 @default.
- W2898080879 hasConceptScore W2898080879C2779343474 @default.
- W2898080879 hasConceptScore W2898080879C33923547 @default.
- W2898080879 hasConceptScore W2898080879C41008148 @default.
- W2898080879 hasConceptScore W2898080879C50644808 @default.
- W2898080879 hasConceptScore W2898080879C86803240 @default.
- W2898080879 hasConceptScore W2898080879C94625758 @default.
- W2898080879 hasLocation W28980808791 @default.
- W2898080879 hasOpenAccess W2898080879 @default.
- W2898080879 hasPrimaryLocation W28980808791 @default.
- W2898080879 hasRelatedWork W1529965919 @default.
- W2898080879 hasRelatedWork W2007228336 @default.
- W2898080879 hasRelatedWork W2053114449 @default.
- W2898080879 hasRelatedWork W2205650436 @default.
- W2898080879 hasRelatedWork W2380963126 @default.
- W2898080879 hasRelatedWork W2386387936 @default.
- W2898080879 hasRelatedWork W2899084033 @default.
- W2898080879 hasRelatedWork W2913400140 @default.
- W2898080879 hasRelatedWork W2974378819 @default.
- W2898080879 hasRelatedWork W3124250737 @default.
- W2898080879 hasVolume "186" @default.
- W2898080879 isParatext "false" @default.
- W2898080879 isRetracted "false" @default.
- W2898080879 magId "2898080879" @default.
- W2898080879 workType "article" @default.