Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898083767> ?p ?o ?g. }
- W2898083767 abstract "We present an analytical framework to study the first-passage (FP) and first-return (FR) distributions for the broad family of models described by the one-dimensional Fokker-Planck equation in finite domains, identifying general properties of these distributions for different classes of models. When in the Fokker-Planck equation the diffusion coefficient is positive (nonzero) and the drift term is bounded, as in the case of a Brownian walker, both distributions may exhibit a power-law decay with exponent -3/2 for intermediate times. We discuss how the influence of an absorbing state changes this exponent. The absorbing state is characterized by a vanishing diffusion coefficient and/or a diverging drift term. Remarkably, the exponent of the Brownian walker class of models is still found, as long as the departure and arrival regions are far enough from the absorbing state, but the range of times where the power law is observed narrows. Close enough to the absorbing point, though, a new exponent may appear. The particular value of the exponent depends on the behavior of the diffusion and the drift terms of the Fokker-Planck equation. We focus on the case of a diffusion term vanishing linearly at the absorbing point. In this case, the FP and FR distributions are similar to those of the voter model, characterized by a power law with exponent -2. As an illustration of the general theory, we compare it with exact analytical solutions and extensive numerical simulations of a two-parameter voter-like family models. We study the behavior of the FP and FR distributions by tuning the importance of the absorbing points throughout changes of the parameters. Finally, the possibility of inferring relevant information about the steady-sate probability distribution of a model from the FP and FR distributions is addressed." @default.
- W2898083767 created "2018-11-02" @default.
- W2898083767 creator A5014366601 @default.
- W2898083767 creator A5060753814 @default.
- W2898083767 creator A5071042104 @default.
- W2898083767 creator A5088309672 @default.
- W2898083767 date "2018-10-26" @default.
- W2898083767 modified "2023-10-17" @default.
- W2898083767 title "First-passage distributions for the one-dimensional Fokker-Planck equation" @default.
- W2898083767 cites W1549049308 @default.
- W2898083767 cites W1579536899 @default.
- W2898083767 cites W1634442933 @default.
- W2898083767 cites W1966612772 @default.
- W2898083767 cites W1971842701 @default.
- W2898083767 cites W1976660933 @default.
- W2898083767 cites W1977260064 @default.
- W2898083767 cites W1982300822 @default.
- W2898083767 cites W1990771981 @default.
- W2898083767 cites W1995519784 @default.
- W2898083767 cites W2003214231 @default.
- W2898083767 cites W2005714879 @default.
- W2898083767 cites W2011047110 @default.
- W2898083767 cites W2036700659 @default.
- W2898083767 cites W2047702753 @default.
- W2898083767 cites W2048920075 @default.
- W2898083767 cites W2051510192 @default.
- W2898083767 cites W2051539311 @default.
- W2898083767 cites W2055401277 @default.
- W2898083767 cites W2058105398 @default.
- W2898083767 cites W2063918277 @default.
- W2898083767 cites W2073409224 @default.
- W2898083767 cites W2078259918 @default.
- W2898083767 cites W2098201978 @default.
- W2898083767 cites W2104845662 @default.
- W2898083767 cites W2110902335 @default.
- W2898083767 cites W2110919848 @default.
- W2898083767 cites W2124024567 @default.
- W2898083767 cites W2129533823 @default.
- W2898083767 cites W2130469453 @default.
- W2898083767 cites W2136412147 @default.
- W2898083767 cites W2155170317 @default.
- W2898083767 cites W2160875695 @default.
- W2898083767 cites W2168157421 @default.
- W2898083767 cites W2262168638 @default.
- W2898083767 cites W2264658725 @default.
- W2898083767 cites W2332905493 @default.
- W2898083767 cites W2341512749 @default.
- W2898083767 cites W2565621830 @default.
- W2898083767 cites W2736141468 @default.
- W2898083767 cites W2768206033 @default.
- W2898083767 cites W2784147567 @default.
- W2898083767 cites W2793044148 @default.
- W2898083767 cites W2947171186 @default.
- W2898083767 cites W2963079678 @default.
- W2898083767 cites W3098340595 @default.
- W2898083767 cites W3102471164 @default.
- W2898083767 cites W3103320367 @default.
- W2898083767 cites W3105402597 @default.
- W2898083767 cites W3105436992 @default.
- W2898083767 cites W3106211947 @default.
- W2898083767 cites W3121462460 @default.
- W2898083767 cites W41049822 @default.
- W2898083767 cites W4240788980 @default.
- W2898083767 cites W4254829826 @default.
- W2898083767 cites W636399929 @default.
- W2898083767 cites W1774806513 @default.
- W2898083767 doi "https://doi.org/10.1103/physreve.98.042143" @default.
- W2898083767 hasPublicationYear "2018" @default.
- W2898083767 type Work @default.
- W2898083767 sameAs 2898083767 @default.
- W2898083767 citedByCount "23" @default.
- W2898083767 countsByYear W28980837672019 @default.
- W2898083767 countsByYear W28980837672020 @default.
- W2898083767 countsByYear W28980837672021 @default.
- W2898083767 countsByYear W28980837672022 @default.
- W2898083767 countsByYear W28980837672023 @default.
- W2898083767 crossrefType "journal-article" @default.
- W2898083767 hasAuthorship W2898083767A5014366601 @default.
- W2898083767 hasAuthorship W2898083767A5060753814 @default.
- W2898083767 hasAuthorship W2898083767A5071042104 @default.
- W2898083767 hasAuthorship W2898083767A5088309672 @default.
- W2898083767 hasBestOaLocation W28980837672 @default.
- W2898083767 hasConcept C105795698 @default.
- W2898083767 hasConcept C112401455 @default.
- W2898083767 hasConcept C121332964 @default.
- W2898083767 hasConcept C121864883 @default.
- W2898083767 hasConcept C134306372 @default.
- W2898083767 hasConcept C138885662 @default.
- W2898083767 hasConcept C164602753 @default.
- W2898083767 hasConcept C2780388253 @default.
- W2898083767 hasConcept C3017618536 @default.
- W2898083767 hasConcept C33923547 @default.
- W2898083767 hasConcept C34388435 @default.
- W2898083767 hasConcept C41008148 @default.
- W2898083767 hasConcept C41895202 @default.
- W2898083767 hasConcept C56739046 @default.
- W2898083767 hasConcept C62520636 @default.
- W2898083767 hasConcept C68710425 @default.
- W2898083767 hasConcept C69123182 @default.
- W2898083767 hasConcept C69357855 @default.