Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898085442> ?p ?o ?g. }
- W2898085442 endingPage "1505" @default.
- W2898085442 startingPage "1505" @default.
- W2898085442 abstract "Climate change and anthropogenic activities, including agricultural irrigation have significantly altered the global and regional hydrological cycle. However, human-induced modification to the natural environment is not well represented in land surface models (LSMs). In this study, we utilize microwave-based soil moisture products to aid the detection of under-represented irrigation processes throughout China. The satellite retrievals used in this study include passive microwave observations from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and its successor AMSR2, active microwave observations from the Advanced Scatterometer (ASCAT), and the blended multi-sensor soil moisture product from the European Space Agency (i.e., ESA CCI product). We first conducted validations of the three soil moisture retrievals against in-situ observations (collected from the nationwide agro-meteorological network) in irrigated areas in China. It is found that compared to the conventional Spearman’s rank correlation and Pearson correlation coefficients, entropy-based mutual information is more suitable for evaluating soil moisture anomalies induced by irrigation. In general, around 60% of uncertainties in the anomaly of “ground truth” time series can be resolved by soil moisture retrievals, with ASCAT outperforming the others. Following this, the potential utility of soil moisture retrievals in mapping irrigation patterns in China is investigated by examining the difference in probability distribution functions (detected by two-sample Kolmogorov-Smirnov test) between soil moisture retrievals and benchmarks of the numerical model ERA-Interim without considering the irrigation process. Results show that microwave remote sensing provides a promising alternative to detect the under-represented irrigation process against the reference LSM ERA-Interim. Specifically, the highest performance in detecting irrigation intensity is found when using ASCAT in Huang-Huai-Hai Plain, followed by advanced microwave scanning radiometer (AMSR) and ESA CCI. Compared to ASCAT, the irrigation detection capabilities of AMSR exhibit higher discrepancies between descending and ascending orbits, since the soil moisture retrieval algorithm of AMSR is based on surface temperature and, thus, more affected by irrigation practices. This study provides insights into detecting the irrigation extent using microwave-based soil moisture with aid of LSM simulations, which has great implications for numerical model development and agricultural managements across the country." @default.
- W2898085442 created "2018-11-02" @default.
- W2898085442 creator A5017945433 @default.
- W2898085442 creator A5051674787 @default.
- W2898085442 creator A5054634734 @default.
- W2898085442 creator A5055061678 @default.
- W2898085442 creator A5064908069 @default.
- W2898085442 creator A5077509941 @default.
- W2898085442 creator A5078361927 @default.
- W2898085442 date "2018-10-24" @default.
- W2898085442 modified "2023-09-26" @default.
- W2898085442 title "The Potential Utility of Satellite Soil Moisture Retrievals for Detecting Irrigation Patterns in China" @default.
- W2898085442 cites W1484476327 @default.
- W2898085442 cites W1495476649 @default.
- W2898085442 cites W1550529600 @default.
- W2898085442 cites W1886678720 @default.
- W2898085442 cites W1965555277 @default.
- W2898085442 cites W1973032455 @default.
- W2898085442 cites W1973552978 @default.
- W2898085442 cites W1995875735 @default.
- W2898085442 cites W2012968254 @default.
- W2898085442 cites W2013049148 @default.
- W2898085442 cites W2017359370 @default.
- W2898085442 cites W2021194643 @default.
- W2898085442 cites W2037455286 @default.
- W2898085442 cites W2048608554 @default.
- W2898085442 cites W2053922221 @default.
- W2898085442 cites W2055976274 @default.
- W2898085442 cites W2061744563 @default.
- W2898085442 cites W2063422594 @default.
- W2898085442 cites W2065045628 @default.
- W2898085442 cites W2070592185 @default.
- W2898085442 cites W2076196252 @default.
- W2898085442 cites W2079044410 @default.
- W2898085442 cites W2085363544 @default.
- W2898085442 cites W2085692681 @default.
- W2898085442 cites W2086030090 @default.
- W2898085442 cites W2089220864 @default.
- W2898085442 cites W2094049607 @default.
- W2898085442 cites W2094343246 @default.
- W2898085442 cites W2096569581 @default.
- W2898085442 cites W2097105377 @default.
- W2898085442 cites W2104642399 @default.
- W2898085442 cites W2107710372 @default.
- W2898085442 cites W2116412356 @default.
- W2898085442 cites W2116770956 @default.
- W2898085442 cites W2117255900 @default.
- W2898085442 cites W2117427339 @default.
- W2898085442 cites W2120321707 @default.
- W2898085442 cites W2122105709 @default.
- W2898085442 cites W2122638861 @default.
- W2898085442 cites W2123330965 @default.
- W2898085442 cites W2123744475 @default.
- W2898085442 cites W2125579002 @default.
- W2898085442 cites W2127904780 @default.
- W2898085442 cites W2135594727 @default.
- W2898085442 cites W2137595065 @default.
- W2898085442 cites W2137807472 @default.
- W2898085442 cites W2137872879 @default.
- W2898085442 cites W2141946715 @default.
- W2898085442 cites W2148691574 @default.
- W2898085442 cites W2155347783 @default.
- W2898085442 cites W2157726577 @default.
- W2898085442 cites W2166609657 @default.
- W2898085442 cites W2167731682 @default.
- W2898085442 cites W2168663102 @default.
- W2898085442 cites W2185905748 @default.
- W2898085442 cites W2215237368 @default.
- W2898085442 cites W2254515353 @default.
- W2898085442 cites W2288664970 @default.
- W2898085442 cites W2501519714 @default.
- W2898085442 cites W2606762649 @default.
- W2898085442 cites W2770849281 @default.
- W2898085442 cites W2890649118 @default.
- W2898085442 cites W3175453060 @default.
- W2898085442 cites W4239787096 @default.
- W2898085442 cites W4252482787 @default.
- W2898085442 doi "https://doi.org/10.3390/w10111505" @default.
- W2898085442 hasPublicationYear "2018" @default.
- W2898085442 type Work @default.
- W2898085442 sameAs 2898085442 @default.
- W2898085442 citedByCount "21" @default.
- W2898085442 countsByYear W28980854422019 @default.
- W2898085442 countsByYear W28980854422020 @default.
- W2898085442 countsByYear W28980854422021 @default.
- W2898085442 countsByYear W28980854422022 @default.
- W2898085442 countsByYear W28980854422023 @default.
- W2898085442 crossrefType "journal-article" @default.
- W2898085442 hasAuthorship W2898085442A5017945433 @default.
- W2898085442 hasAuthorship W2898085442A5051674787 @default.
- W2898085442 hasAuthorship W2898085442A5054634734 @default.
- W2898085442 hasAuthorship W2898085442A5055061678 @default.
- W2898085442 hasAuthorship W2898085442A5064908069 @default.
- W2898085442 hasAuthorship W2898085442A5077509941 @default.
- W2898085442 hasAuthorship W2898085442A5078361927 @default.
- W2898085442 hasBestOaLocation W28980854421 @default.
- W2898085442 hasConcept C120189094 @default.
- W2898085442 hasConcept C127313418 @default.