Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898090658> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2898090658 endingPage "3515" @default.
- W2898090658 startingPage "3494" @default.
- W2898090658 abstract "India is a predominantly agriculture based economy country. Annual population growth rate of the country is nearly 1.8 % and if per capita consumption of rice is expected to be 400 gm of rice per day then the demand for rice in 2025 will be 130 m. tones. For obtaining the high yield with seed planting equipment or planter, it is very essential to drop the paddy seeds in rows maintaining accurate seed rate and seed spacing with minimum damage to seeds during metering. This mainly depends on forward speed of the planting equipment, peripheral speed of metering plate and area of cells on the plate. The relationship between these factors and the performance parameters viz. seed rate, seed spacing and percent seed damage can be established using regression analysis. But they may not be very accurate and may pose to difficulty in the determination of inputs for a set of desired outputs (reverse mapping). Hence, an attempt has been made in this paper to develop the feed forward artificial neural network (ANN) models for the prediction of the performance parameters of an inclined plate seed metering device. The data were generated in the laboratory by conducting experiments on a sticky belt test stand provided with a seed metering device and an opto-electronic seed counter. The generated data was used to develop both statistical and neural network models. The performance of the developed models was compared among themselves for 4 randomly generated test cases. The results show that the ANN model predicted the performance parameters of the seed metering device better than the statistical models. In order to determine the optimum forward speed of the planter, peripheral speed of the metering plate and the area of cells on the plate to obtain the recommended seed rate of 104.68 seeds/m2, seed spacing of 100.04 mm and percent seed damage of 0.19% with 100% fill of the cells, a novel technique of reverse mapping using ANN model was followed. It was observed that the optimum forward speed of the planting equipment and optimum area of cells on the metering plate had good correlation with size of seed. Linear regression equations were developed to predict the optimum forward speed of the planting equipment and optimum area of cells on the metering plate using the size of seeds as independent parameters. The peripheral speed of the metering plate of 0.150 m/s was found to be optimum for the size of seeds in the range of 33.67-41.01 mm2. However the results need to be verified by conducting planting operation under actual field conditions." @default.
- W2898090658 created "2018-11-02" @default.
- W2898090658 creator A5007702729 @default.
- W2898090658 creator A5013444255 @default.
- W2898090658 date "2018-10-10" @default.
- W2898090658 modified "2023-09-22" @default.
- W2898090658 title "Neural Network Prediction of Performance Parameters of an Inclined Plate Seed Metering Mechanism and its Reverse Mapping for Rice" @default.
- W2898090658 cites W1660407695 @default.
- W2898090658 cites W1856306624 @default.
- W2898090658 cites W1898854492 @default.
- W2898090658 cites W1984367183 @default.
- W2898090658 cites W1985181574 @default.
- W2898090658 cites W2021728873 @default.
- W2898090658 cites W2022545576 @default.
- W2898090658 cites W2037791527 @default.
- W2898090658 cites W2137836766 @default.
- W2898090658 cites W21563058 @default.
- W2898090658 cites W2908527626 @default.
- W2898090658 cites W851838395 @default.
- W2898090658 cites W2184540269 @default.
- W2898090658 doi "https://doi.org/10.20546/ijcmas.2018.710.405" @default.
- W2898090658 hasPublicationYear "2018" @default.
- W2898090658 type Work @default.
- W2898090658 sameAs 2898090658 @default.
- W2898090658 citedByCount "2" @default.
- W2898090658 countsByYear W28980906582020 @default.
- W2898090658 countsByYear W28980906582022 @default.
- W2898090658 crossrefType "journal-article" @default.
- W2898090658 hasAuthorship W2898090658A5007702729 @default.
- W2898090658 hasAuthorship W2898090658A5013444255 @default.
- W2898090658 hasBestOaLocation W28980906581 @default.
- W2898090658 hasConcept C105795698 @default.
- W2898090658 hasConcept C127413603 @default.
- W2898090658 hasConcept C127598652 @default.
- W2898090658 hasConcept C144024400 @default.
- W2898090658 hasConcept C149923435 @default.
- W2898090658 hasConcept C154945302 @default.
- W2898090658 hasConcept C168741863 @default.
- W2898090658 hasConcept C2908647359 @default.
- W2898090658 hasConcept C30905978 @default.
- W2898090658 hasConcept C33923547 @default.
- W2898090658 hasConcept C41008148 @default.
- W2898090658 hasConcept C44154836 @default.
- W2898090658 hasConcept C50644808 @default.
- W2898090658 hasConcept C6557445 @default.
- W2898090658 hasConcept C78519656 @default.
- W2898090658 hasConcept C86803240 @default.
- W2898090658 hasConcept C88463610 @default.
- W2898090658 hasConceptScore W2898090658C105795698 @default.
- W2898090658 hasConceptScore W2898090658C127413603 @default.
- W2898090658 hasConceptScore W2898090658C127598652 @default.
- W2898090658 hasConceptScore W2898090658C144024400 @default.
- W2898090658 hasConceptScore W2898090658C149923435 @default.
- W2898090658 hasConceptScore W2898090658C154945302 @default.
- W2898090658 hasConceptScore W2898090658C168741863 @default.
- W2898090658 hasConceptScore W2898090658C2908647359 @default.
- W2898090658 hasConceptScore W2898090658C30905978 @default.
- W2898090658 hasConceptScore W2898090658C33923547 @default.
- W2898090658 hasConceptScore W2898090658C41008148 @default.
- W2898090658 hasConceptScore W2898090658C44154836 @default.
- W2898090658 hasConceptScore W2898090658C50644808 @default.
- W2898090658 hasConceptScore W2898090658C6557445 @default.
- W2898090658 hasConceptScore W2898090658C78519656 @default.
- W2898090658 hasConceptScore W2898090658C86803240 @default.
- W2898090658 hasConceptScore W2898090658C88463610 @default.
- W2898090658 hasIssue "10" @default.
- W2898090658 hasLocation W28980906581 @default.
- W2898090658 hasOpenAccess W2898090658 @default.
- W2898090658 hasPrimaryLocation W28980906581 @default.
- W2898090658 hasRelatedWork W1571226107 @default.
- W2898090658 hasRelatedWork W1736610528 @default.
- W2898090658 hasRelatedWork W2357521257 @default.
- W2898090658 hasRelatedWork W2571940118 @default.
- W2898090658 hasRelatedWork W3015554564 @default.
- W2898090658 hasRelatedWork W3088415562 @default.
- W2898090658 hasRelatedWork W3132260342 @default.
- W2898090658 hasRelatedWork W3133630371 @default.
- W2898090658 hasRelatedWork W3211649458 @default.
- W2898090658 hasRelatedWork W4321513253 @default.
- W2898090658 hasVolume "7" @default.
- W2898090658 isParatext "false" @default.
- W2898090658 isRetracted "false" @default.
- W2898090658 magId "2898090658" @default.
- W2898090658 workType "article" @default.