Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898094539> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2898094539 abstract "Tensors are commonly used for representing multi-modal data, such as Web graphs, sensor streams, and social networks. As a consequence of this, tensor-based algorithms, most notably tensor decomposition, are becoming a core tool for data analysis and knowledge discovery, including clustering. Intuitively, tensor decomposition process generalizes matrix decomposition to high-dimensional arrays (known as tensors) and rewrites the given tensor in the form of a set of factor matrices (one for each mode of the input tensor) and a core tensor (which, intuitively, describes the spectral structure of the given tensor). These factor matrices and core tensors then can be used for obtaining multi-modal clusters of the input data. One key problem with tensor decomposition, however, is its computational complexity. One way to deal with this challenge is to partition the tensor and obtain the tensor decomposition leveraging these smaller partitions. This solution, however, leaves an important open question: how to most effectively combine results from these partitions. In this chapter, we introduce the notion of sub-tensor impact graphs (SIGs), which quantify how the decompositions of these sub-partitions impact each other and the overall tensor decomposition accuracy and present several complementary algorithms that leverage this novel concept to address various key challenges in tensor decomposition: (a) Personalized Tensor Decomposition (PTD) algorithm leverages sub-tensor impact graphs to focus the accuracy of the tensor decomposition process on parts of the data tensor which are most relevant to a particular clustering task; whereas the (b) noise-profile adaptive tensor decomposition (nTD) method leverages limited a priori information about noise distribution in the data to improve tensor decomposition accuracy. Finally, (c) a two-phase block-incremental tensor decomposition technique, BICP, efficiently and effectively maintains tensor decomposition results in the presence of incrementally evolving tensor data. We also present experimental results, with diverse data sets, that show that, if properly constructed, sub-tensor impact graphs can indeed help overcome various density and noise challenges in clustering of multi-modal data sets." @default.
- W2898094539 created "2018-11-02" @default.
- W2898094539 creator A5003070145 @default.
- W2898094539 creator A5043892415 @default.
- W2898094539 creator A5069732995 @default.
- W2898094539 creator A5070127662 @default.
- W2898094539 date "2018-10-28" @default.
- W2898094539 modified "2023-10-16" @default.
- W2898094539 title "Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs" @default.
- W2898094539 cites W111803032 @default.
- W2898094539 cites W1500188831 @default.
- W2898094539 cites W1539585011 @default.
- W2898094539 cites W1574504252 @default.
- W2898094539 cites W1706897027 @default.
- W2898094539 cites W1963826206 @default.
- W2898094539 cites W1990280147 @default.
- W2898094539 cites W1993589664 @default.
- W2898094539 cites W1997863462 @default.
- W2898094539 cites W2004791924 @default.
- W2898094539 cites W2024165284 @default.
- W2898094539 cites W2028778237 @default.
- W2898094539 cites W2063385922 @default.
- W2898094539 cites W2067469651 @default.
- W2898094539 cites W2089441007 @default.
- W2898094539 cites W2099242680 @default.
- W2898094539 cites W2103392911 @default.
- W2898094539 cites W2119511382 @default.
- W2898094539 cites W2136065080 @default.
- W2898094539 cites W2139895170 @default.
- W2898094539 cites W2219888463 @default.
- W2898094539 cites W2440837865 @default.
- W2898094539 cites W2537876352 @default.
- W2898094539 cites W2605177427 @default.
- W2898094539 cites W2607771729 @default.
- W2898094539 doi "https://doi.org/10.1007/978-3-319-97864-2_7" @default.
- W2898094539 hasPublicationYear "2018" @default.
- W2898094539 type Work @default.
- W2898094539 sameAs 2898094539 @default.
- W2898094539 citedByCount "0" @default.
- W2898094539 crossrefType "book-chapter" @default.
- W2898094539 hasAuthorship W2898094539A5003070145 @default.
- W2898094539 hasAuthorship W2898094539A5043892415 @default.
- W2898094539 hasAuthorship W2898094539A5069732995 @default.
- W2898094539 hasAuthorship W2898094539A5070127662 @default.
- W2898094539 hasConcept C11413529 @default.
- W2898094539 hasConcept C124007464 @default.
- W2898094539 hasConcept C134306372 @default.
- W2898094539 hasConcept C148125525 @default.
- W2898094539 hasConcept C154945302 @default.
- W2898094539 hasConcept C155281189 @default.
- W2898094539 hasConcept C166077713 @default.
- W2898094539 hasConcept C20178491 @default.
- W2898094539 hasConcept C202444582 @default.
- W2898094539 hasConcept C2986737658 @default.
- W2898094539 hasConcept C33923547 @default.
- W2898094539 hasConcept C41008148 @default.
- W2898094539 hasConcept C520416788 @default.
- W2898094539 hasConcept C64835786 @default.
- W2898094539 hasConcept C73555534 @default.
- W2898094539 hasConcept C80444323 @default.
- W2898094539 hasConceptScore W2898094539C11413529 @default.
- W2898094539 hasConceptScore W2898094539C124007464 @default.
- W2898094539 hasConceptScore W2898094539C134306372 @default.
- W2898094539 hasConceptScore W2898094539C148125525 @default.
- W2898094539 hasConceptScore W2898094539C154945302 @default.
- W2898094539 hasConceptScore W2898094539C155281189 @default.
- W2898094539 hasConceptScore W2898094539C166077713 @default.
- W2898094539 hasConceptScore W2898094539C20178491 @default.
- W2898094539 hasConceptScore W2898094539C202444582 @default.
- W2898094539 hasConceptScore W2898094539C2986737658 @default.
- W2898094539 hasConceptScore W2898094539C33923547 @default.
- W2898094539 hasConceptScore W2898094539C41008148 @default.
- W2898094539 hasConceptScore W2898094539C520416788 @default.
- W2898094539 hasConceptScore W2898094539C64835786 @default.
- W2898094539 hasConceptScore W2898094539C73555534 @default.
- W2898094539 hasConceptScore W2898094539C80444323 @default.
- W2898094539 hasLocation W28980945391 @default.
- W2898094539 hasOpenAccess W2898094539 @default.
- W2898094539 hasPrimaryLocation W28980945391 @default.
- W2898094539 hasRelatedWork W2142412563 @default.
- W2898094539 hasRelatedWork W2298280028 @default.
- W2898094539 hasRelatedWork W2765690628 @default.
- W2898094539 hasRelatedWork W2898094539 @default.
- W2898094539 hasRelatedWork W2919008182 @default.
- W2898094539 hasRelatedWork W2981910625 @default.
- W2898094539 hasRelatedWork W3012809789 @default.
- W2898094539 hasRelatedWork W3100283963 @default.
- W2898094539 hasRelatedWork W4283791819 @default.
- W2898094539 hasRelatedWork W4287824706 @default.
- W2898094539 isParatext "false" @default.
- W2898094539 isRetracted "false" @default.
- W2898094539 magId "2898094539" @default.
- W2898094539 workType "book-chapter" @default.