Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898184327> ?p ?o ?g. }
- W2898184327 endingPage "161" @default.
- W2898184327 startingPage "143" @default.
- W2898184327 abstract "Fisheries scientists provide stock, ecosystem, habitat, and climate assessments to support interdisplinary fisheries management in the US and worldwide. These assessment activities have evolved different models, using different review standards, and are communicated using different vocabulary. Recent research shows that spatio-temporal models can estimate population density for multiple locations, times, and species, and that this is a “common currency” for addressing core goals in stock, ecosystem, habitat, and climate assessments. I therefore review the history and “design principles” for one spatio-temporal modelling package, the Vector Autoregressive Spatio-Temporal (VAST) package. I then provide guidance on fifteen major decisions that must be made by users of VAST, including: whether to use a univariate or multivariate model; when to include spatial and/or spatio-temporal variation; how many factors to use within a multivariate model; whether to include density or catchability covariates; and when to include a temporal correlation on model components. I finally demonstrate these decisions using three case studies. The first develops indices of abundance, distribution shift, and range expansion for arrowtooth flounder (Atheresthes stomias) in the Eastern Bering Sea, showing the range expansion for this species. The second involves “species ordination” of eight groundfishes in the Gulf of Alaska bottom trawl survey, which highlights the different spatial distribution of flathead sole (Hippoglossoides elassodon) relative to sablefish (Anoplopoma fimbria) and dover sole (Microstomus pacificus). The third involves a short-term forecast of the proportion of coastwide abundance for five groundfishes within three spatial strata in the US West Coast groundfish bottom trawl survey, and predicts large interannual variability (and high uncertainty) in the distribution of lingcod (Ophiodon elongatus). I conclude by recommending further research exploring the benefits and limitations of a “common currency” approach to stock, ecosystem, habitat, and climate assessments, and discuss extending this approach to optimal survey design and economic assessments." @default.
- W2898184327 created "2018-11-02" @default.
- W2898184327 creator A5024684992 @default.
- W2898184327 date "2019-02-01" @default.
- W2898184327 modified "2023-10-09" @default.
- W2898184327 title "Guidance for decisions using the Vector Autoregressive Spatio-Temporal (VAST) package in stock, ecosystem, habitat and climate assessments" @default.
- W2898184327 cites W1644145788 @default.
- W2898184327 cites W1790462712 @default.
- W2898184327 cites W1837874438 @default.
- W2898184327 cites W1851368146 @default.
- W2898184327 cites W1920817623 @default.
- W2898184327 cites W1931831004 @default.
- W2898184327 cites W1972376960 @default.
- W2898184327 cites W1973749534 @default.
- W2898184327 cites W1975790581 @default.
- W2898184327 cites W1984711187 @default.
- W2898184327 cites W1987516513 @default.
- W2898184327 cites W1994866314 @default.
- W2898184327 cites W1999425895 @default.
- W2898184327 cites W2000144814 @default.
- W2898184327 cites W2003759963 @default.
- W2898184327 cites W2004807582 @default.
- W2898184327 cites W2012199603 @default.
- W2898184327 cites W2019707596 @default.
- W2898184327 cites W2028497721 @default.
- W2898184327 cites W2039146308 @default.
- W2898184327 cites W2048776980 @default.
- W2898184327 cites W2050878697 @default.
- W2898184327 cites W2073008079 @default.
- W2898184327 cites W2075357627 @default.
- W2898184327 cites W2082321135 @default.
- W2898184327 cites W2086327335 @default.
- W2898184327 cites W2108367215 @default.
- W2898184327 cites W2110491138 @default.
- W2898184327 cites W2112038911 @default.
- W2898184327 cites W2114503729 @default.
- W2898184327 cites W2116100710 @default.
- W2898184327 cites W2122505518 @default.
- W2898184327 cites W2123890994 @default.
- W2898184327 cites W2130902307 @default.
- W2898184327 cites W2134818642 @default.
- W2898184327 cites W2141050660 @default.
- W2898184327 cites W2141655198 @default.
- W2898184327 cites W2147215567 @default.
- W2898184327 cites W2168016523 @default.
- W2898184327 cites W2170565777 @default.
- W2898184327 cites W2173240835 @default.
- W2898184327 cites W2184324564 @default.
- W2898184327 cites W2219066451 @default.
- W2898184327 cites W2256116549 @default.
- W2898184327 cites W2318137547 @default.
- W2898184327 cites W2327862760 @default.
- W2898184327 cites W2335332931 @default.
- W2898184327 cites W2335552172 @default.
- W2898184327 cites W2400673165 @default.
- W2898184327 cites W2529793393 @default.
- W2898184327 cites W2575562503 @default.
- W2898184327 cites W2580913194 @default.
- W2898184327 cites W2583324669 @default.
- W2898184327 cites W2612275049 @default.
- W2898184327 cites W2613757354 @default.
- W2898184327 cites W2616187748 @default.
- W2898184327 cites W2728154825 @default.
- W2898184327 cites W2734519926 @default.
- W2898184327 cites W2754833048 @default.
- W2898184327 cites W2762233262 @default.
- W2898184327 cites W2766785228 @default.
- W2898184327 cites W2791870666 @default.
- W2898184327 cites W2793864561 @default.
- W2898184327 cites W2804147923 @default.
- W2898184327 cites W2808994623 @default.
- W2898184327 cites W2884368984 @default.
- W2898184327 cites W2891486861 @default.
- W2898184327 cites W2895294839 @default.
- W2898184327 cites W3103194080 @default.
- W2898184327 cites W3125553893 @default.
- W2898184327 doi "https://doi.org/10.1016/j.fishres.2018.10.013" @default.
- W2898184327 hasPublicationYear "2019" @default.
- W2898184327 type Work @default.
- W2898184327 sameAs 2898184327 @default.
- W2898184327 citedByCount "142" @default.
- W2898184327 countsByYear W28981843272018 @default.
- W2898184327 countsByYear W28981843272019 @default.
- W2898184327 countsByYear W28981843272020 @default.
- W2898184327 countsByYear W28981843272021 @default.
- W2898184327 countsByYear W28981843272022 @default.
- W2898184327 countsByYear W28981843272023 @default.
- W2898184327 crossrefType "journal-article" @default.
- W2898184327 hasAuthorship W2898184327A5024684992 @default.
- W2898184327 hasConcept C107826830 @default.
- W2898184327 hasConcept C132124917 @default.
- W2898184327 hasConcept C159985019 @default.
- W2898184327 hasConcept C166957645 @default.
- W2898184327 hasConcept C185933670 @default.
- W2898184327 hasConcept C18903297 @default.
- W2898184327 hasConcept C192562407 @default.
- W2898184327 hasConcept C201490090 @default.
- W2898184327 hasConcept C202041845 @default.