Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898199744> ?p ?o ?g. }
- W2898199744 endingPage "1361" @default.
- W2898199744 startingPage "1347" @default.
- W2898199744 abstract "Fuzzy neural networks (FNNs), with suitable structures, have been demonstrated to be an effective tool in approximating nonlinearity between input and output variables. However, it is time-consuming to construct an FNN with appropriate number of fuzzy rules to ensure its generalization ability. To solve this problem, an efficient optimization technique is introduced in this paper. First, a self-adaptive structural optimal algorithm (SASOA) is developed to minimize the structural risk of an FNN, leading to an improved generalization performance. Second, with the proposed SASOA, the fuzzy rules of SASOA-based FNN (SASOA-FNN) are generated or pruned systematically. This SASOA-FNN is able to organize the structure and adjust the parameters simultaneously in the learning process. Third, the convergence of SASOA-FNN is proved in the cases with fixed and updated structures, and the guidelines for selecting the parameters are given. Finally, experimental studies of the proposed SASOA-FNN have been performed on several nonlinear systems to verify the effectiveness. The comparison with other existing methods has been made, and it demonstrates that the proposed SASOA-FNN is of better performance." @default.
- W2898199744 created "2018-11-02" @default.
- W2898199744 creator A5017284976 @default.
- W2898199744 creator A5055432844 @default.
- W2898199744 creator A5072240057 @default.
- W2898199744 creator A5084201050 @default.
- W2898199744 date "2019-07-01" @default.
- W2898199744 modified "2023-10-17" @default.
- W2898199744 title "An Efficient Optimization Method for Improving Generalization Performance of Fuzzy Neural Networks" @default.
- W2898199744 cites W1963502807 @default.
- W2898199744 cites W1964400613 @default.
- W2898199744 cites W1971824518 @default.
- W2898199744 cites W1973900078 @default.
- W2898199744 cites W1978851512 @default.
- W2898199744 cites W1980063284 @default.
- W2898199744 cites W1999482631 @default.
- W2898199744 cites W1999969198 @default.
- W2898199744 cites W2007836289 @default.
- W2898199744 cites W2022062543 @default.
- W2898199744 cites W2026092728 @default.
- W2898199744 cites W2030888282 @default.
- W2898199744 cites W2031299410 @default.
- W2898199744 cites W2038144171 @default.
- W2898199744 cites W2039331278 @default.
- W2898199744 cites W2042728365 @default.
- W2898199744 cites W2050159152 @default.
- W2898199744 cites W2050918738 @default.
- W2898199744 cites W2051085510 @default.
- W2898199744 cites W2052345845 @default.
- W2898199744 cites W2054446390 @default.
- W2898199744 cites W2055874934 @default.
- W2898199744 cites W2060302943 @default.
- W2898199744 cites W2061277551 @default.
- W2898199744 cites W2064772769 @default.
- W2898199744 cites W2073769342 @default.
- W2898199744 cites W2075065503 @default.
- W2898199744 cites W2080505068 @default.
- W2898199744 cites W2081090082 @default.
- W2898199744 cites W2087822830 @default.
- W2898199744 cites W2090794980 @default.
- W2898199744 cites W2092144116 @default.
- W2898199744 cites W2093768254 @default.
- W2898199744 cites W2100811108 @default.
- W2898199744 cites W2108604074 @default.
- W2898199744 cites W2113173022 @default.
- W2898199744 cites W2122130411 @default.
- W2898199744 cites W2122592549 @default.
- W2898199744 cites W2130379465 @default.
- W2898199744 cites W2132093718 @default.
- W2898199744 cites W2134961275 @default.
- W2898199744 cites W2141614013 @default.
- W2898199744 cites W2144397661 @default.
- W2898199744 cites W2147968325 @default.
- W2898199744 cites W2152623177 @default.
- W2898199744 cites W2160944589 @default.
- W2898199744 cites W2169934749 @default.
- W2898199744 cites W2170262723 @default.
- W2898199744 cites W2171604354 @default.
- W2898199744 cites W2172073485 @default.
- W2898199744 cites W2207428197 @default.
- W2898199744 cites W2241667675 @default.
- W2898199744 cites W2242021551 @default.
- W2898199744 cites W2299724360 @default.
- W2898199744 cites W2511274580 @default.
- W2898199744 cites W4236966694 @default.
- W2898199744 doi "https://doi.org/10.1109/tfuzz.2018.2878156" @default.
- W2898199744 hasPublicationYear "2019" @default.
- W2898199744 type Work @default.
- W2898199744 sameAs 2898199744 @default.
- W2898199744 citedByCount "12" @default.
- W2898199744 countsByYear W28981997442020 @default.
- W2898199744 countsByYear W28981997442021 @default.
- W2898199744 countsByYear W28981997442022 @default.
- W2898199744 countsByYear W28981997442023 @default.
- W2898199744 crossrefType "journal-article" @default.
- W2898199744 hasAuthorship W2898199744A5017284976 @default.
- W2898199744 hasAuthorship W2898199744A5055432844 @default.
- W2898199744 hasAuthorship W2898199744A5072240057 @default.
- W2898199744 hasAuthorship W2898199744A5084201050 @default.
- W2898199744 hasConcept C111919701 @default.
- W2898199744 hasConcept C121332964 @default.
- W2898199744 hasConcept C126255220 @default.
- W2898199744 hasConcept C134306372 @default.
- W2898199744 hasConcept C154945302 @default.
- W2898199744 hasConcept C158622935 @default.
- W2898199744 hasConcept C162324750 @default.
- W2898199744 hasConcept C177148314 @default.
- W2898199744 hasConcept C199360897 @default.
- W2898199744 hasConcept C2777303404 @default.
- W2898199744 hasConcept C2780801425 @default.
- W2898199744 hasConcept C33923547 @default.
- W2898199744 hasConcept C41008148 @default.
- W2898199744 hasConcept C50522688 @default.
- W2898199744 hasConcept C50644808 @default.
- W2898199744 hasConcept C58166 @default.
- W2898199744 hasConcept C62520636 @default.
- W2898199744 hasConcept C98045186 @default.
- W2898199744 hasConceptScore W2898199744C111919701 @default.