Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898234583> ?p ?o ?g. }
- W2898234583 endingPage "372" @default.
- W2898234583 startingPage "360" @default.
- W2898234583 abstract "The significant issues in remote sensing image fusion are enhancing the spatial details and preserving the essential spectral information. The classical pan-sharpening methods often incur spectral distortion and still striving to produce the fused images with prominent spatial and spectral attributes. Motivated by the desirable results of sparse representation (SR) theory, a novel pan-sharpening method is developed based on SR of high frequency (HF) components over a multi-scale learned dictionary (MSLD). MSLD technique acquires the capability of extracting the intrinsic characteristics of images, wherein, it possess the features of both multi-scale representation and learned dictionaries. In this paper, the dictionaries are adaptively learned from HF sub-images derived from the two versions of panchromatic image, realized at different spatial resolutions. A fast and computationally efficient algorithm is used for dictionary learning. The notion of SR together with patch recurrence over different scales is incorporated to estimate the high frequency details. The fused image is reconstructed by injecting the band specific spatial details into the up-sampled multi-spectral images. The performance of the proposed method is appraised with the datasets from different satellite sensors namely, QuickBird, IKONOS, WorldView-2 and Pléiades. The observations inferred from visual perception and quality indices analysis manifest the efficiency of proposed method over several well-known methods for the datasets considered at reduced-scale and full-scale resolutions. Further, the quantitative analysis of obtained performance measures confirms the efficacy of the proposed method for the reduced-scale and full-scale data sets. Especially, at a reduced-scale, proposed method yields an optimal value of Correlation coefficient, Structural similarity and Q4. In a comparative sense, usage of the proposed method at full-scale results in 4% and 2.56% improvement in the Spatial distortion index for QuickBird and WorldView-2 data respectively contrary to the best reported outcome obtained from Sparse Representation of injected details (SR-D) scheme. Invariably, for full-scale data, the QNR attains its optimal value." @default.
- W2898234583 created "2018-11-02" @default.
- W2898234583 creator A5025204764 @default.
- W2898234583 creator A5041535646 @default.
- W2898234583 date "2018-12-01" @default.
- W2898234583 modified "2023-10-02" @default.
- W2898234583 title "Sparsity inspired pan-sharpening technique using multi-scale learned dictionary" @default.
- W2898234583 cites W1970836680 @default.
- W2898234583 cites W1976709621 @default.
- W2898234583 cites W1986629820 @default.
- W2898234583 cites W1997238646 @default.
- W2898234583 cites W1999174140 @default.
- W2898234583 cites W2014316959 @default.
- W2898234583 cites W2015380729 @default.
- W2898234583 cites W2020442368 @default.
- W2898234583 cites W2020679958 @default.
- W2898234583 cites W2022075948 @default.
- W2898234583 cites W2030662348 @default.
- W2898234583 cites W2047482723 @default.
- W2898234583 cites W2061615939 @default.
- W2898234583 cites W2064366277 @default.
- W2898234583 cites W2065757249 @default.
- W2898234583 cites W2073196383 @default.
- W2898234583 cites W2080159719 @default.
- W2898234583 cites W2084225223 @default.
- W2898234583 cites W2088538848 @default.
- W2898234583 cites W2088907631 @default.
- W2898234583 cites W2100329651 @default.
- W2898234583 cites W2111924917 @default.
- W2898234583 cites W2114161542 @default.
- W2898234583 cites W2116148865 @default.
- W2898234583 cites W2117146861 @default.
- W2898234583 cites W2119077559 @default.
- W2898234583 cites W2124952510 @default.
- W2898234583 cites W2126025632 @default.
- W2898234583 cites W2127320676 @default.
- W2898234583 cites W2129953395 @default.
- W2898234583 cites W2139529730 @default.
- W2898234583 cites W2139582718 @default.
- W2898234583 cites W2144436897 @default.
- W2898234583 cites W2152254169 @default.
- W2898234583 cites W2158537567 @default.
- W2898234583 cites W2160547390 @default.
- W2898234583 cites W2163677711 @default.
- W2898234583 cites W2165329055 @default.
- W2898234583 cites W2171108951 @default.
- W2898234583 cites W2171211028 @default.
- W2898234583 cites W2303172903 @default.
- W2898234583 cites W2460041091 @default.
- W2898234583 cites W2534320940 @default.
- W2898234583 cites W2610945978 @default.
- W2898234583 cites W4250955649 @default.
- W2898234583 doi "https://doi.org/10.1016/j.isprsjprs.2018.10.009" @default.
- W2898234583 hasPublicationYear "2018" @default.
- W2898234583 type Work @default.
- W2898234583 sameAs 2898234583 @default.
- W2898234583 citedByCount "20" @default.
- W2898234583 countsByYear W28982345832019 @default.
- W2898234583 countsByYear W28982345832020 @default.
- W2898234583 countsByYear W28982345832021 @default.
- W2898234583 countsByYear W28982345832022 @default.
- W2898234583 countsByYear W28982345832023 @default.
- W2898234583 crossrefType "journal-article" @default.
- W2898234583 hasAuthorship W2898234583A5025204764 @default.
- W2898234583 hasAuthorship W2898234583A5041535646 @default.
- W2898234583 hasConcept C107445234 @default.
- W2898234583 hasConcept C115961682 @default.
- W2898234583 hasConcept C124066611 @default.
- W2898234583 hasConcept C126780896 @default.
- W2898234583 hasConcept C153180895 @default.
- W2898234583 hasConcept C154945302 @default.
- W2898234583 hasConcept C17744445 @default.
- W2898234583 hasConcept C194257627 @default.
- W2898234583 hasConcept C199539241 @default.
- W2898234583 hasConcept C205649164 @default.
- W2898234583 hasConcept C2776257435 @default.
- W2898234583 hasConcept C2776359362 @default.
- W2898234583 hasConcept C2778755073 @default.
- W2898234583 hasConcept C2781137444 @default.
- W2898234583 hasConcept C31258907 @default.
- W2898234583 hasConcept C31972630 @default.
- W2898234583 hasConcept C41008148 @default.
- W2898234583 hasConcept C58640448 @default.
- W2898234583 hasConcept C62649853 @default.
- W2898234583 hasConcept C69744172 @default.
- W2898234583 hasConcept C94625758 @default.
- W2898234583 hasConceptScore W2898234583C107445234 @default.
- W2898234583 hasConceptScore W2898234583C115961682 @default.
- W2898234583 hasConceptScore W2898234583C124066611 @default.
- W2898234583 hasConceptScore W2898234583C126780896 @default.
- W2898234583 hasConceptScore W2898234583C153180895 @default.
- W2898234583 hasConceptScore W2898234583C154945302 @default.
- W2898234583 hasConceptScore W2898234583C17744445 @default.
- W2898234583 hasConceptScore W2898234583C194257627 @default.
- W2898234583 hasConceptScore W2898234583C199539241 @default.
- W2898234583 hasConceptScore W2898234583C205649164 @default.
- W2898234583 hasConceptScore W2898234583C2776257435 @default.
- W2898234583 hasConceptScore W2898234583C2776359362 @default.