Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898286603> ?p ?o ?g. }
- W2898286603 abstract "Let $G$ be a finite $2$-generated non-cyclic group. The spread of $G$ is the largest integer $k$ such that for any nontrivial elements $x_1, ldots, x_k$, there exists $y in G$ such that $G = langle x_i, yrangle$ for all $i$. The more restrictive notion of uniform spread, denoted $u(G)$, requires $y$ to be chosen from a fixed conjugacy class of $G$, and a theorem of Breuer, Guralnick and Kantor states that $u(G) geqslant 2$ for every non-abelian finite simple group $G$. For any group with $u(G) geqslant 1$, we define the uniform domination number $gamma_u(G)$ of $G$ to be the minimal size of a subset $S$ of conjugate elements such that for each nontrivial $x in G$ there exists $y in S$ with $G = langle x, y rangle$ (in this situation, we say that $S$ is a uniform dominating set for $G$). We introduced the latter notion in a recent paper, where we used probabilistic methods to determine close to best possible bounds on $gamma_u(G)$ for all simple groups $G$. In this paper we establish several new results on the spread, uniform spread and uniform domination number of finite groups and finite simple groups. For example, we make substantial progress towards a classification of the simple groups $G$ with $gamma_u(G)=2$, and we study the associated probability that two randomly chosen conjugate elements form a uniform dominating set for $G$. We also establish new results concerning the $2$-generation of soluble and symmetric groups, and we present several open problems." @default.
- W2898286603 created "2018-11-02" @default.
- W2898286603 creator A5024944956 @default.
- W2898286603 creator A5087244891 @default.
- W2898286603 date "2018-10-29" @default.
- W2898286603 modified "2023-09-25" @default.
- W2898286603 title "Finite groups, 2-generation and the uniform domination number" @default.
- W2898286603 cites W12766527 @default.
- W2898286603 cites W14581337 @default.
- W2898286603 cites W1490067361 @default.
- W2898286603 cites W1492178509 @default.
- W2898286603 cites W1493654001 @default.
- W2898286603 cites W1515379151 @default.
- W2898286603 cites W1558883566 @default.
- W2898286603 cites W1570047016 @default.
- W2898286603 cites W157485412 @default.
- W2898286603 cites W1602350096 @default.
- W2898286603 cites W1970121927 @default.
- W2898286603 cites W1971760587 @default.
- W2898286603 cites W1976677460 @default.
- W2898286603 cites W1981330140 @default.
- W2898286603 cites W1981477383 @default.
- W2898286603 cites W2006114752 @default.
- W2898286603 cites W2015901827 @default.
- W2898286603 cites W2021936272 @default.
- W2898286603 cites W2028093740 @default.
- W2898286603 cites W2038002896 @default.
- W2898286603 cites W2039252607 @default.
- W2898286603 cites W2039498982 @default.
- W2898286603 cites W2042214251 @default.
- W2898286603 cites W2044326926 @default.
- W2898286603 cites W2045459539 @default.
- W2898286603 cites W2046433533 @default.
- W2898286603 cites W2049247960 @default.
- W2898286603 cites W2051170661 @default.
- W2898286603 cites W2055566058 @default.
- W2898286603 cites W2057080512 @default.
- W2898286603 cites W2058583722 @default.
- W2898286603 cites W2064441649 @default.
- W2898286603 cites W2068350043 @default.
- W2898286603 cites W2074294932 @default.
- W2898286603 cites W2076612807 @default.
- W2898286603 cites W2078590838 @default.
- W2898286603 cites W2095329978 @default.
- W2898286603 cites W2099901768 @default.
- W2898286603 cites W2113983768 @default.
- W2898286603 cites W2119687749 @default.
- W2898286603 cites W2146337808 @default.
- W2898286603 cites W2148757468 @default.
- W2898286603 cites W2150164926 @default.
- W2898286603 cites W2164314258 @default.
- W2898286603 cites W2286324518 @default.
- W2898286603 cites W2599379601 @default.
- W2898286603 cites W2611243569 @default.
- W2898286603 cites W2792769747 @default.
- W2898286603 cites W2798943694 @default.
- W2898286603 cites W2963294419 @default.
- W2898286603 cites W2964119372 @default.
- W2898286603 cites W2964190226 @default.
- W2898286603 cites W2980645358 @default.
- W2898286603 cites W3106067876 @default.
- W2898286603 cites W642718757 @default.
- W2898286603 cites W87121454 @default.
- W2898286603 cites W2740668743 @default.
- W2898286603 hasPublicationYear "2018" @default.
- W2898286603 type Work @default.
- W2898286603 sameAs 2898286603 @default.
- W2898286603 citedByCount "0" @default.
- W2898286603 crossrefType "posted-content" @default.
- W2898286603 hasAuthorship W2898286603A5024944956 @default.
- W2898286603 hasAuthorship W2898286603A5087244891 @default.
- W2898286603 hasConcept C111472728 @default.
- W2898286603 hasConcept C114614502 @default.
- W2898286603 hasConcept C118615104 @default.
- W2898286603 hasConcept C121332964 @default.
- W2898286603 hasConcept C134306372 @default.
- W2898286603 hasConcept C136170076 @default.
- W2898286603 hasConcept C138885662 @default.
- W2898286603 hasConcept C162392398 @default.
- W2898286603 hasConcept C199360897 @default.
- W2898286603 hasConcept C202444582 @default.
- W2898286603 hasConcept C2777404646 @default.
- W2898286603 hasConcept C2780586882 @default.
- W2898286603 hasConcept C2781311116 @default.
- W2898286603 hasConcept C33923547 @default.
- W2898286603 hasConcept C41008148 @default.
- W2898286603 hasConcept C51997251 @default.
- W2898286603 hasConcept C5383885 @default.
- W2898286603 hasConcept C62520636 @default.
- W2898286603 hasConcept C63388996 @default.
- W2898286603 hasConcept C81651864 @default.
- W2898286603 hasConcept C87945829 @default.
- W2898286603 hasConcept C97137487 @default.
- W2898286603 hasConceptScore W2898286603C111472728 @default.
- W2898286603 hasConceptScore W2898286603C114614502 @default.
- W2898286603 hasConceptScore W2898286603C118615104 @default.
- W2898286603 hasConceptScore W2898286603C121332964 @default.
- W2898286603 hasConceptScore W2898286603C134306372 @default.
- W2898286603 hasConceptScore W2898286603C136170076 @default.
- W2898286603 hasConceptScore W2898286603C138885662 @default.